Mercurial > hg > Members > kono > Proof > automaton
view agda/automaton-text.agda @ 67:b9679ebd1156
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 31 Oct 2019 13:53:26 +0900 |
parents | agda/regular-language.agda@293a2075514b |
children | 13822f5f9c85 |
line wrap: on
line source
module automaton-text where -- open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.List open import Data.Maybe -- open import Data.Bool using ( Bool ; true ; false ; _∧_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import logic -- open import Data.Bool renaming ( _∧_ to _and_ ; _∨_ to _or ) open import automaton open Automaton lemma4 : {i n : ℕ } → i < n → i < suc n lemma4 {0} {0} () lemma4 {0} {suc n} lt = s≤s z≤n lemma4 {suc i} {0} () lemma4 {suc i} {suc n} (s≤s lt) = s≤s (lemma4 lt) lemma5 : {n : ℕ } → n < suc n lemma5 {zero} = s≤s z≤n lemma5 {suc n} = s≤s lemma5 record accept-n { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (astart : Q ) (n : ℕ ) (s : {i : ℕ } → (i < n) → Σ ) : Set where field r : (i : ℕ ) → i < suc n → Q accept-1 : r 0 (s≤s z≤n) ≡ astart accept-2 : (i : ℕ ) → (i<n : i < n ) → δ M (r i (lemma4 i<n)) (s i<n) ≡ r (suc i) (s≤s i<n) accept-3 : aend M (r n lemma5 ) ≡ true get : { Σ : Set } → (x : List Σ ) → { i : ℕ } → i < length x → Σ get [] () get (h ∷ t) {0} (s≤s lt) = h get (h ∷ t) {suc i} (s≤s lt) = get t lt lemma7 : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (h : Σ) → (t : List Σ ) → accept M q (h ∷ t) ≡ true → accept M (δ M q h) t ≡ true lemma7 M q h t eq with accept M (δ M q h) t lemma7 M q h t refl | true = refl lemma7 M q h t () | false open accept-n lemma→ : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (x : List Σ ) → accept M q x ≡ true → accept-n M q (length x) (get x ) lemma→ {Q} {Σ} M q [] eq = record { r = λ i lt → get [ q ] {i} lt ; accept-1 = refl ; accept-2 = λ _ () ; accept-3 = eq } lemma→ {Q} {Σ} M q (h ∷ t) eq with lemma→ M (δ M q h) t (lemma7 M q h t eq) ... | an = record { r = seq ; accept-1 = refl ; accept-2 = acc2 ; accept-3 = accept-3 an } where seq : (i : ℕ) → i < suc (suc (foldr (λ _ → suc) 0 t)) → Q seq 0 lt = q seq (suc i) (s≤s lt) = r an i lt acc2 : (i : ℕ) (i<n : i < suc (foldr (λ _ → suc) 0 t)) → δ M (seq i (lemma4 i<n)) (get (h ∷ t) i<n) ≡ seq (suc i) (s≤s i<n) acc2 zero (s≤s z≤n) = begin δ M (seq zero (lemma4 (s≤s z≤n))) (get (h ∷ t) (s≤s z≤n)) ≡⟨⟩ δ M q h ≡⟨ sym ( accept-1 an) ⟩ seq 1 (s≤s (s≤s z≤n)) ∎ where open ≡-Reasoning acc2 (suc i) (s≤s lt) = accept-2 an i lt an-1 : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (h : Σ ) → (t : List Σ ) → accept-n M q (length (h ∷ t)) (get (h ∷ t) ) → accept-n M (δ M q h) (length t) (get t ) an-1 {Q} {Σ} M q h t an = record { r = seq ; accept-1 = acc1 ; accept-2 = acc2 ; accept-3 = accept-3 an } where seq : (i : ℕ) → i < suc (length t) → Q seq i lt = r an (suc i) ( s≤s lt) acc1 : seq 0 (s≤s z≤n) ≡ δ M q h acc1 = begin seq 0 (s≤s z≤n) ≡⟨⟩ r an 1 (s≤s (s≤s z≤n)) ≡⟨ sym (accept-2 an 0 (s≤s z≤n)) ⟩ δ M (r an 0 (s≤s z≤n)) h ≡⟨ cong (λ k → δ M k h) (accept-1 an) ⟩ δ M q h ∎ where open ≡-Reasoning acc2 : (i : ℕ) (i<n : i < length t) → δ M (seq i (lemma4 i<n)) (get t i<n) ≡ seq (suc i) (s≤s i<n) acc2 i lt = accept-2 an (suc i) (s≤s lt) lemma← : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (x : List Σ ) → accept-n M q (length x) (get x ) → accept M q x ≡ true lemma← {Q} {Σ} M q [] an with accept-1 an | accept-3 an ... | eq1 | eq3 = begin aend M q ≡⟨ cong ( λ k → aend M k ) (sym (accept-1 an)) ⟩ aend M (r an 0 lemma5) ≡⟨ accept-3 an ⟩ true ∎ where open ≡-Reasoning lemma← {Q} {Σ} M q (h ∷ t) an = lemma← M (δ M q h) t ( an-1 M q h t an )