view automaton-in-agda/src/regex.agda @ 395:cd81e0869fac

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 03 Aug 2023 14:55:14 +0900
parents a5c874396cc4
children af8f630b7e60
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
module regex where

open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Fin hiding ( pred )
open import Data.Nat hiding ( _≟_ )
open import Data.List hiding ( any ;  [_] )
-- import Data.Bool using ( Bool ; true ; false ; _∧_ )
-- open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ )
open import  Relation.Binary.PropositionalEquality as RBF hiding ( [_] ) 
open import Relation.Nullary using (¬_; Dec; yes; no)
open import logic
open import regular-language

data Regex ( Σ : Set) : Set  where
  ε     : Regex Σ                -- empty
  φ     : Regex  Σ               -- fail
  _*    : Regex  Σ  → Regex  Σ 
  _&_   : Regex  Σ  → Regex  Σ → Regex Σ
  _||_  : Regex  Σ  → Regex  Σ → Regex Σ
  <_>   : Σ → Regex  Σ

infixr 40 _&_ _||_

-- Meaning of regular expression

regex-language : {Σ : Set} → Regex Σ → ((x y : Σ ) → Dec (x ≡ y))  →  List Σ → Bool
regex-language φ cmp _ = false
regex-language ε cmp [] = true
regex-language ε cmp (_ ∷ _) = false
regex-language (x *) cmp = repeat ( regex-language x cmp  )
regex-language (x & y) cmp  = split ( λ z → regex-language x  cmp z ) (λ z →  regex-language y  cmp z )
regex-language (x || y) cmp  = λ s → ( regex-language x  cmp s )  \/  ( regex-language y  cmp s)
regex-language < h > cmp  [] = false
regex-language < h > cmp  (h1  ∷ [] ) with cmp h h1
... | yes _ = true
... | no _  = false
regex-language < h >  _ (_ ∷ _ ∷ _)  = false