Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/utm.agda @ 319:cd91a9f313dd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 12 Jan 2022 21:20:16 +0900 |
parents | 3fa72793620b |
children | 6f3636fbc481 |
line wrap: on
line source
module utm where open import turing open import Data.Product -- open import Data.Bool open import Data.List open import Data.Nat open import logic data utmStates : Set where reads : utmStates read0 : utmStates read1 : utmStates read2 : utmStates read3 : utmStates read4 : utmStates read5 : utmStates read6 : utmStates loc0 : utmStates loc1 : utmStates loc2 : utmStates loc3 : utmStates loc4 : utmStates loc5 : utmStates loc6 : utmStates fetch0 : utmStates fetch1 : utmStates fetch2 : utmStates fetch3 : utmStates fetch4 : utmStates fetch5 : utmStates fetch6 : utmStates fetch7 : utmStates print0 : utmStates print1 : utmStates print2 : utmStates print3 : utmStates print4 : utmStates print5 : utmStates print6 : utmStates print7 : utmStates mov0 : utmStates mov1 : utmStates mov2 : utmStates mov3 : utmStates mov4 : utmStates mov5 : utmStates mov6 : utmStates tidy0 : utmStates tidy1 : utmStates halt : utmStates data utmΣ : Set where 0 : utmΣ 1 : utmΣ B : utmΣ * : utmΣ $ : utmΣ ^ : utmΣ X : utmΣ Y : utmΣ Z : utmΣ @ : utmΣ b : utmΣ utmδ : utmStates → utmΣ → utmStates × (Write utmΣ) × Move utmδ reads x = read0 , wnone , mnone utmδ read0 * = read1 , write * , left utmδ read0 x = read0 , write x , right utmδ read1 x = read2 , write @ , right utmδ read2 ^ = read3 , write ^ , right utmδ read2 x = read2 , write x , right utmδ read3 0 = read4 , write 0 , left utmδ read3 1 = read5 , write 1 , left utmδ read3 b = read6 , write b , left utmδ read4 @ = loc0 , write 0 , right utmδ read4 x = read4 , write x , left utmδ read5 @ = loc0 , write 1 , right utmδ read5 x = read5 , write x , left utmδ read6 @ = loc0 , write B , right utmδ read6 x = read6 , write x , left utmδ loc0 0 = loc0 , write X , left utmδ loc0 1 = loc0 , write Y , left utmδ loc0 B = loc0 , write Z , left utmδ loc0 $ = loc1 , write $ , right utmδ loc0 x = loc0 , write x , left utmδ loc1 X = loc2 , write 0 , right utmδ loc1 Y = loc3 , write 1 , right utmδ loc1 Z = loc4 , write B , right utmδ loc1 * = fetch0 , write * , right utmδ loc1 x = loc1 , write x , right utmδ loc2 0 = loc5 , write X , right utmδ loc2 1 = loc6 , write Y , right utmδ loc2 B = loc6 , write Z , right utmδ loc2 x = loc2 , write x , right utmδ loc3 1 = loc5 , write Y , right utmδ loc3 0 = loc6 , write X , right utmδ loc3 B = loc6 , write Z , right utmδ loc3 x = loc3 , write x , right utmδ loc4 B = loc5 , write Z , right utmδ loc4 0 = loc6 , write X , right utmδ loc4 1 = loc6 , write Y , right utmδ loc4 x = loc4 , write x , right utmδ loc5 $ = loc1 , write $ , right utmδ loc5 x = loc5 , write x , left utmδ loc6 $ = halt , write $ , right utmδ loc6 * = loc0 , write * , left utmδ loc6 x = loc6 , write x , right utmδ fetch0 0 = fetch1 , write X , left utmδ fetch0 1 = fetch2 , write Y , left utmδ fetch0 B = fetch3 , write Z , left utmδ fetch0 x = fetch0 , write x , right utmδ fetch1 $ = fetch4 , write $ , right utmδ fetch1 x = fetch1 , write x , left utmδ fetch2 $ = fetch5 , write $ , right utmδ fetch2 x = fetch2 , write x , left utmδ fetch3 $ = fetch6 , write $ , right utmδ fetch3 x = fetch3 , write x , left utmδ fetch4 0 = fetch7 , write X , right utmδ fetch4 1 = fetch7 , write X , right utmδ fetch4 B = fetch7 , write X , right utmδ fetch4 * = print0 , write * , left utmδ fetch4 x = fetch4 , write x , right utmδ fetch5 0 = fetch7 , write Y , right utmδ fetch5 1 = fetch7 , write Y , right utmδ fetch5 B = fetch7 , write Y , right utmδ fetch5 * = print0 , write * , left utmδ fetch5 x = fetch5 , write x , right utmδ fetch6 0 = fetch7 , write Z , right utmδ fetch6 1 = fetch7 , write Z , right utmδ fetch6 B = fetch7 , write Z , right utmδ fetch6 * = print0 , write * , left utmδ fetch6 x = fetch6 , write x , right utmδ fetch7 * = fetch0 , write * , right utmδ fetch7 x = fetch7 , write x , right utmδ print0 X = print1 , write X , right utmδ print0 Y = print2 , write Y , right utmδ print0 Z = print3 , write Z , right utmδ print1 ^ = print4 , write ^ , right utmδ print1 x = print1 , write x , right utmδ print2 ^ = print5 , write ^ , right utmδ print2 x = print2 , write x , right utmδ print3 ^ = print6 , write ^ , right utmδ print3 x = print3 , write x , right utmδ print4 x = print7 , write 0 , left utmδ print5 x = print7 , write 1 , left utmδ print6 x = print7 , write B , left utmδ print7 X = mov0 , write X , right utmδ print7 Y = mov1 , write Y , right utmδ print7 x = print7 , write x , left utmδ mov0 ^ = mov2 , write ^ , left utmδ mov0 x = mov0 , write x , right utmδ mov1 ^ = mov3 , write ^ , right utmδ mov1 x = mov1 , write x , right utmδ mov2 0 = mov4 , write ^ , right utmδ mov2 1 = mov5 , write ^ , right utmδ mov2 B = mov6 , write ^ , right utmδ mov3 0 = mov4 , write ^ , left utmδ mov3 1 = mov5 , write ^ , left utmδ mov3 B = mov6 , write ^ , left utmδ mov4 ^ = tidy0 , write 0 , left utmδ mov5 ^ = tidy0 , write 1 , left utmδ mov6 ^ = tidy0 , write B , left utmδ tidy0 $ = tidy1 , write $ , left utmδ tidy0 x = tidy0 , write x , left utmδ tidy1 X = tidy1 , write 0 , left utmδ tidy1 Y = tidy1 , write 1 , left utmδ tidy1 Z = tidy1 , write B , left utmδ tidy1 $ = reads , write $ , right utmδ tidy1 x = tidy1 , write x , left utmδ _ x = halt , write x , mnone U-TM : Turing utmStates utmΣ U-TM = record { tδ = utmδ ; tstart = read0 ; tend = tend ; tnone = b } where tend : utmStates → Bool tend halt = true tend _ = false -- Copyδ : CopyStates → ℕ → CopyStates × ( Write ℕ ) × Move -- Copyδ s1 0 = H , wnone , mnone -- Copyδ s1 1 = s2 , write 0 , right -- Copyδ s2 0 = s3 , write 0 , right -- Copyδ s2 1 = s2 , write 1 , right -- Copyδ s3 0 = s4 , write 1 , left -- Copyδ s3 1 = s3 , write 1 , right -- Copyδ s4 0 = s5 , write 0 , left -- Copyδ s4 1 = s4 , write 1 , left -- Copyδ s5 0 = s1 , write 1 , right -- Copyδ s5 1 = s5 , write 1 , left -- Copyδ H _ = H , wnone , mnone -- Copyδ _ (suc (suc _)) = H , wnone , mnone Copyδ-encode : List utmΣ Copyδ-encode = 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ -- s1 0 = H , wnone , mnone * ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ -- s1 1 = s2 , write 0 , right * ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ -- s2 0 = s3 , write 0 , right * ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ -- s2 1 = s2 , write 1 , right * ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s3 0 = s4 , write 1 , left * ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s3 1 = s3 , write 1 , right * ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ -- s4 0 = s5 , write 0 , left * ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s4 1 = s4 , write 1 , left * ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s5 0 = s1 , write 1 , right * ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ -- s5 1 = s5 , write 1 , left [] input-encode : List utmΣ input-encode = 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] input+Copyδ : List utmΣ input+Copyδ = ( $ ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ * ∷ [] ) -- start state ++ Copyδ-encode ++ ( $ ∷ ^ ∷ input-encode ) short-input : List utmΣ short-input = $ ∷ 0 ∷ 0 ∷ 0 ∷ * ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ * ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ * ∷ 0 ∷ 1 ∷ B ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ * ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ $ ∷ ^ ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ [] utm-test1 : List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ ) utm-test1 inp = Turing.taccept U-TM inp {-# TERMINATING #-} utm-test2 : ℕ → List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ ) utm-test2 n inp = loop n (Turing.tstart U-TM) inp [] where loop : ℕ → utmStates → ( List utmΣ ) → ( List utmΣ ) → utmStates × ( List utmΣ ) × ( List utmΣ ) loop zero q L R = ( q , L , R ) loop (suc n) q L R with move {utmStates} {utmΣ} {0} {utmδ} q L R | q ... | nq , nL , nR | reads = loop n nq nL nR ... | nq , nL , nR | _ = loop (suc n) nq nL nR t1 = utm-test2 20 short-input t : (n : ℕ) → utmStates × ( List utmΣ ) × ( List utmΣ ) -- t n = utm-test2 n input+Copyδ t n = utm-test2 n short-input