Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/finiteSet.agda @ 278:e89957b99662
dup in finiteSet in long list
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Dec 2021 12:38:37 +0900 |
parents | d1e8e5eadc38 |
children | 91781b7c65a8 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module finiteSet where open import Data.Nat hiding ( _≟_ ) open import Data.Fin renaming ( _<_ to _<<_ ) hiding (_≤_) -- open import Data.Fin.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality open import logic open import nat open import Data.Nat.Properties hiding ( _≟_ ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) record FiniteSet ( Q : Set ) : Set where field finite : ℕ Q←F : Fin finite → Q F←Q : Q → Fin finite finiso→ : (q : Q) → Q←F ( F←Q q ) ≡ q finiso← : (f : Fin finite ) → F←Q ( Q←F f ) ≡ f exists1 : (m : ℕ ) → m Data.Nat.≤ finite → (Q → Bool) → Bool exists1 zero _ _ = false exists1 ( suc m ) m<n p = p (Q←F (fromℕ< {m} {finite} m<n)) \/ exists1 m (<to≤ m<n) p exists : ( Q → Bool ) → Bool exists p = exists1 finite ≤-refl p open import Data.List list1 : (m : ℕ ) → m Data.Nat.≤ finite → (Q → Bool) → List Q list1 zero _ _ = [] list1 ( suc m ) m<n p with bool-≡-? (p (Q←F (fromℕ< {m} {finite} m<n))) true ... | yes _ = Q←F (fromℕ< {m} {finite} m<n) ∷ list1 m (<to≤ m<n) p ... | no _ = list1 m (<to≤ m<n) p to-list : ( Q → Bool ) → List Q to-list p = list1 finite ≤-refl p equal? : Q → Q → Bool equal? q0 q1 with F←Q q0 ≟ F←Q q1 ... | yes p = true ... | no ¬p = false