Mercurial > hg > Members > kono > Proof > automaton
view agda/root2.agda @ 89:e919e82e95a2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 Nov 2019 12:21:44 +0900 |
parents | b34eb13b3fe8 |
children | b3f05cd08d24 |
line wrap: on
line source
module root2 where open import Data.Nat open import Data.Empty open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Nat.DivMod even : (n : ℕ ) → Set even n = n % 2 ≡ 0 even? : (n : ℕ ) → Dec ( even n ) even? n with n % 2 even? n | zero = yes refl even? n | suc k = no ( λ () ) nn-even : {n : ℕ } → even n → even ( n * n ) nn-even {n} eq = {!!} 2-even : {n : ℕ } → even ( 2 * n ) 2-even {n} = {!!} even-2 : (n : ℕ ) → (n + 2) % 2 ≡ 0 → n % 2 ≡ 0 even-2 0 refl = refl even-2 1 () even-2 (suc (suc n)) eq = {!!} -- trans ([a+n]%n≡a%n (suc (suc n)) _ ) eq -- [a+n]%n≡a%n : ∀ a n → (a + suc n) % suc n ≡ a % suc n even-half : (n : ℕ ) → even n → ℕ even-half zero _ = zero even-half (suc (suc n)) ev = {!!} -- 1 + even-half n (subst (λ k → k ≡ 0 ) {!!} {!!} ) root2-irrational : ( n m : ℕ ) → ¬ ( 2 * n * n ≡ m * m ) root2-irrational n m eq = {!!}