view agda/turing.agda @ 89:e919e82e95a2

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 10 Nov 2019 12:21:44 +0900
parents 964e4bd0272a
children 3be1afb87f82
line wrap: on
line source

module turing where

open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat hiding ( erase )
open import Data.List
open import Data.Maybe
open import Data.Bool using ( Bool ; true ; false ) renaming ( not to negate )
open import  Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Product


data Write   (  Σ : Set  ) : Set  where
   write   : Σ → Write  Σ
   wnone   : Write  Σ
   --   erase write tnone

data Move : Set  where
   left   : Move  
   right  : Move  
   mnone  : Move  

-- at tδ both stack is poped

-- write S      push S  , push SR
-- erase        push SL , push tone 
-- none         push SL , push SR 
-- left         push SR , pop      
-- right        pop     , push SL      

{-# TERMINATING #-}
move : {Q Σ : Set } → { tone : Σ} → {tδ : Q →  Σ → Q × ( Write  Σ ) ×  Move } → (q : Q ) ( L : List  Σ ) ( L : List   Σ ) → ( Q × List  Σ × List  Σ )
move {Q} {Σ} {tnone} {tδ} q L [] = move {Q} {Σ} {tnone} {tδ} q  L  ( tnone  ∷ [] ) 
move {Q} {Σ} {tnone} {tδ} q [] R = move {Q} {Σ} {tnone} {tδ} q  ( tnone  ∷ [] )  R 
move {Q} {Σ} {tnone} {tδ} q ( LH  ∷ LT ) ( RH ∷ RT ) with  tδ q LH  
... | nq , write x , left  = ( nq , ( RH ∷ x  ∷ LT ) , RT )
... | nq , write x , right = ( nq , LT , ( x  ∷ RH  ∷ RT ) )
... | nq , write x , mnone = ( nq , ( x  ∷ LT ) , (  RH ∷ RT ) )
... | nq , wnone , left    = ( nq , ( RH  ∷ LH  ∷ LT ) , RT  )
... | nq , wnone , right   = ( nq ,  LT , ( LH  ∷ RH  ∷ RT ) )
... | nq , wnone , mnone   = ( nq , ( LH  ∷ LT ) , (  RH ∷ RT )  )
{-# TERMINATING #-}
move-loop : {Q Σ : Set } → {tend :  Q → Bool}   → (q : Q ) ( L : List  Σ ) ( L : List   Σ ) → ( Q × List  Σ × List  Σ )
move-loop {Q} {Σ} {tend}  q L R with tend q
... | true = ( q , L , R )
... | flase = move-loop {Q} {Σ} {tend} ( proj₁ next ) ( proj₁ ( proj₂ next ) )  ( proj₂  ( proj₂ next ) )
        where
        next = move {Q} {Σ} {{!!}} {{!!}}  q  L  R 

record Turing ( Q : Set ) ( Σ : Set  ) 
       : Set  where
    field
        tδ : Q →  Σ → Q × ( Write  Σ ) ×  Move 
        tstart : Q
        tend : Q → Bool
        tnone :  Σ
    {-# TERMINATING #-}
    move0 : (q : Q ) ( L : List  Σ ) ( L : List   Σ ) → ( Q × List  Σ × List  Σ )
    move0  q L R with tend q
    ... | true = ( q , L , R )
    move0 q L [] | false = move0 q  L  ( tnone  ∷ [] ) 
    move0 q [] R | false = move0 q  ( tnone  ∷ [] )  R 
    move0 q ( LH  ∷ LT ) ( RH ∷ RT ) | false with  tδ q LH  
    ... | nq , write x , left  = move0 nq ( RH ∷ x  ∷ LT ) RT 
    ... | nq , write x , right = move0 nq LT ( x  ∷ RH  ∷ RT ) 
    ... | nq , write x , mnone = move0 nq ( x  ∷ LT ) (  RH ∷ RT ) 
    ... | nq , wnone , left    = move0 nq ( RH  ∷ LH  ∷ LT ) RT  
    ... | nq , wnone , right   = move0 nq  LT ( LH  ∷ RH  ∷ RT ) 
    ... | nq , wnone , mnone   = move0 nq ( LH  ∷ LT ) (  RH ∷ RT )  
    taccept : List  Σ → ( Q × List  Σ × List  Σ )
    taccept L = move0 tstart L []

data CopyStates : Set where
   s1 : CopyStates
   s2 : CopyStates
   s3 : CopyStates
   s4 : CopyStates
   s5 : CopyStates
   H  : CopyStates


Copyδ :  CopyStates →  ℕ  → CopyStates × ( Write  ℕ ) × Move 
Copyδ s1 0  = (H    , wnone       , mnone )
Copyδ s1 1  = (s2   , write 0 , right )
Copyδ s2 0  = (s3   , write 0 , right )
Copyδ s2 1  = (s2   , write 1 , right )
Copyδ s3 0  = (s4   , write 1 , left )
Copyδ s3 1  = (s3   , write 1 , right )
Copyδ s4 0  = (s5   , write 0 , left )
Copyδ s4 1  = (s4   , write 1 , left )
Copyδ s5 0  = (s1   , write 1 , right )
Copyδ s5 1  = (s5   , write 1 , left )
Copyδ H  _  = (H    , wnone   , mnone )
Copyδ _  (suc (suc _))      = (H    , wnone       , mnone )

copyMachine : Turing CopyStates ℕ
copyMachine = record {
        tδ = Copyδ
     ;  tstart = s1
     ;  tend = tend
     ;  tnone =  0
  } where
      tend : CopyStates →  Bool
      tend H = true
      tend _ = false

test1 : CopyStates × ( List  ℕ ) × ( List  ℕ )
test1 = Turing.taccept copyMachine  ( 1  ∷ 1  ∷ 0  ∷ 0  ∷  0 ∷ []  )

test2 : ℕ  → CopyStates × ( List  ℕ ) × ( List  ℕ )
test2 n  = loop n (Turing.tstart copyMachine) ( 1  ∷ 1  ∷ 0  ∷ 0  ∷  0 ∷ []  ) []
  where
        loop :  ℕ → CopyStates → ( List  ℕ ) → ( List  ℕ ) → CopyStates × ( List  ℕ ) × ( List  ℕ )
        loop zero q L R = ( q , L , R )
        loop (suc n) q L R = loop n ( proj₁ t1 ) ( proj₁ ( proj₂ t1 ) )  ( proj₂  ( proj₂ t1 ) )
          where
              t1 = move {CopyStates} {ℕ} {0} {Copyδ} q L R


---
--     utm char
--         head         head  position
--         send         state description end
--         del          state delimitor
--         sstart       state description start
--         0
--         1
--     utm state description 
--          state-num      ℕ    ( 0 accept, 1 reject )
--          print          0 write 0, 1 write 1, 2 none
--          move           0 left   , 1 none     2 write
--     utm state
--          head-value    : ℕ
--          current-state : ℕ
--          direction     : ℕ
--          head-dir      : ℕ
--
--    --------------- head sstart ( state description ) * send input --------------
--
--    loop    search  sstart ( depend on head position )
--            if state description end reject
--            if state-num eq current state
--                if accept end
--                set current-state, direction and head-value by utm state description
--                goto exec
--            else goto loop
--     exec   
--           if head-dir = left
--              search head towrards letf
--           else
--              search head towards  write
--           put head-value
--           move head ( considering state description )
--           back to sstart
--           goto loop



postulate UTM : Turing ℕ ℕ 
postulate encode-for-utm : Turing ℕ ℕ → List ℕ
postulate enumerate-tm : Turing ℕ ℕ → ℕ
postulate utm-simulate : ( tm : Turing ℕ ℕ ) → ( In : List ℕ ) →  Turing.taccept UTM  ((encode-for-utm tm) ++ In) ≡ Turing.taccept tm In

record Halt : Set where
    field
       halt :  List ℕ → Bool
       TM : Turing ℕ ℕ 

open Halt

record NotHalt ( H : Halt ) : Set where
    field
       nothalt :  List ℕ → Bool
       NegTM : Turing ℕ ℕ 
       neg :  (n : List ℕ ) → nothalt n  ≡ negate ( halt H n )

open NotHalt

-- neg : ( tm : Turing ℕ ℕ ) → ( h : Halt ) →  Bool
-- neg tm h = negate ( halt h ( encode-for-utm tm ) )

open import Data.Empty

lemma1 : (H : Halt ) → (NH : NotHalt H ) → nothalt NH (encode-for-utm ( NegTM NH ))  ≡ true  →  ⊥
lemma1 h nh negneg=1 with halt h (encode-for-utm ( NegTM nh )) | nothalt nh (encode-for-utm ( NegTM nh )) | neg nh (encode-for-utm ( NegTM nh ))
... | true | false  | refl = {!!}
... | false | true  | refl = {!!}

lemma2 : (H : Halt ) → (NH : NotHalt H ) → nothalt NH (encode-for-utm ( NegTM NH ))  ≡ false  →  ⊥
lemma2 h nh negneg=1 with halt h (encode-for-utm ( NegTM nh )) | nothalt nh (encode-for-utm ( NegTM nh )) | neg nh (encode-for-utm ( NegTM nh ))
... | true  | false  | refl = {!!}
... | false | true  | refl = {!!}