Mercurial > hg > Members > kono > Proof > automaton
view agda/pushdown.agda @ 45:e9edc777dc03
fix derive
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Dec 2018 15:48:05 +0900 |
parents | ab265470c2d0 |
children | 7a0634a7c25a |
line wrap: on
line source
module pushdown where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.List open import Data.Maybe open import Data.Bool using ( Bool ; true ; false ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Product data PushDown ( Γ : Set ) : Set where pop : PushDown Γ push : Γ → PushDown Γ record PushDownAutomaton ( Q : Set ) ( Σ : Set ) ( Γ : Set ) : Set where field pδ : Q → Σ → Γ → Q × ( PushDown Γ ) pstart : Q pok : Q → Bool pempty : Γ pmoves : Q → List Γ → Σ → ( Q × List Γ ) pmoves q [] i with pδ q i pempty pmoves q [] i | qn , pop = ( qn , [] ) pmoves q [] i | qn , push x = ( qn , ( x ∷ [] ) ) pmoves q ( H ∷ T ) i with pδ q i H pmoves q (H ∷ T) i | qn , pop = ( qn , T ) pmoves q (H ∷ T) i | qn , push x = ( qn , ( x ∷ H ∷ T) ) paccept : List Σ → Bool paccept L = move pstart L [] where move : (q : Q ) ( In : List Σ ) ( sp : List Γ ) → Bool move q [] [] = pok q move q ( H ∷ T) [] with pδ q H pempty move q (H ∷ T) [] | qn , pop = move qn T [] move q (H ∷ T) [] | qn , push x = move qn T (x ∷ [] ) move q [] (_ ∷ _ ) = false move q ( H ∷ T ) ( SH ∷ ST ) with pδ q H SH ... | (nq , pop ) = move nq T ST ... | (nq , push ns ) = move nq T ( ns ∷ SH ∷ ST ) -- 0011 -- 00000111111 inputnn : { n : ℕ } → { Σ : Set } → ( x y : Σ ) → List Σ → List Σ inputnn {zero} {_} _ _ s = s inputnn {suc n} x y s = x ∷ ( inputnn {n} x y ( y ∷ s ) ) data States0 : Set where sr : States0 data In2 : Set where i0 : In2 i1 : In2 pnn : PushDownAutomaton States0 In2 States0 pnn = record { pδ = pδ ; pstart = sr ; pempty = sr ; pok = λ q → true } where pδ : States0 → In2 → States0 → States0 × PushDown States0 pδ sr i0 _ = (sr , push sr) pδ sr i1 _ = (sr , pop ) test1 = PushDownAutomaton.paccept pnn ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) test2 = PushDownAutomaton.paccept pnn ( i0 ∷ i0 ∷ i1 ∷ i0 ∷ [] ) test3 = PushDownAutomaton.pmoves pnn sr [] i0