Mercurial > hg > Members > kono > Proof > automaton
view agda/regop.agda @ 45:e9edc777dc03
fix derive
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Dec 2018 15:48:05 +0900 |
parents | 9406c2571fe7 |
children |
line wrap: on
line source
module regop where open import automaton -- open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.List open import Data.Maybe open import Data.Product open import Data.Bool using ( Bool ; true ; false ; _∧_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) union : {Q1 Q2 Σ : Set } → ( M1 : Automaton Q1 Σ) ( M2 : Automaton Q2 Σ) → Automaton (Q1 × Q2) Σ union {Q1} {Q2} {Σ} M1 M2 = record { δ = δ ; astart = astart ; aend = aend } where δ : (Q1 × Q2) → Σ → (Q1 × Q2) δ = {!!} astart : (Q1 × Q2) astart = {!!} aend : (Q1 × Q2) → Bool aend = {!!} data _∨_ (A B : Set) : Set where p1 : A → A ∨ B p2 : B → A ∨ B union← : {Q1 Q2 Σ : Set } → ( M1 : Automaton Q1 Σ) ( M2 : Automaton Q2 Σ) → ∀ ( s : List Σ ) → accept ( union M1 M2 ) s ≡ true → ( ( accept M1 s ≡ true ) ∨ ( accept M2 s ≡ true) ) union← {Q1} {Q2} {Σ} M1 M2 s eq = {!!}