view automaton-in-agda/src/nat.agda @ 260:eddc2c1be16f

lb<
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 06 Jul 2021 01:40:18 +0900
parents 0ef9a73cae45
children 57fd08c16e25
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
module nat where

open import Data.Nat 
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Nullary
open import  Relation.Binary.PropositionalEquality
open import  Relation.Binary.Core
open import  Relation.Binary.Definitions
open import  logic
open import Level hiding ( zero ; suc ) 

nat-<> : { x y : ℕ } → x < y → y < x → ⊥
nat-<>  (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x

nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
nat-≤>  (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x

nat-<≡ : { x : ℕ } → x < x → ⊥
nat-<≡  (s≤s lt) = nat-<≡ lt

nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥
nat-≡< refl lt = nat-<≡ lt

¬a≤a : {la : ℕ} → suc la ≤ la → ⊥
¬a≤a  (s≤s lt) = ¬a≤a  lt

a<sa : {la : ℕ} → la < suc la 
a<sa {zero} = s≤s z≤n
a<sa {suc la} = s≤s a<sa 

=→¬< : {x : ℕ  } → ¬ ( x < x )
=→¬< {zero} ()
=→¬< {suc x} (s≤s lt) = =→¬< lt

>→¬< : {x y : ℕ  } → (x < y ) → ¬ ( y < x )
>→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x

<-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) )
<-∨ {zero} {zero} (s≤s z≤n) = case1 refl
<-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n)
<-∨ {suc x} {zero} (s≤s ())
<-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt
<-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
<-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)

max : (x y : ℕ) → ℕ
max zero zero = zero
max zero (suc x) = (suc x)
max (suc x) zero = (suc x)
max (suc x) (suc y) = suc ( max x y )

-- _*_ : ℕ → ℕ → ℕ
-- _*_ zero _ = zero
-- _*_ (suc n) m = m + ( n * m )

-- x ^ y
exp : ℕ → ℕ → ℕ
exp _ zero = 1
exp n (suc m) = n * ( exp n m )

div2 : ℕ → (ℕ ∧ Bool )
div2 zero =  ⟪ 0 , false ⟫
div2 (suc zero) =  ⟪ 0 , true ⟫
div2 (suc (suc n)) =  ⟪ suc (proj1 (div2 n)) , proj2 (div2 n) ⟫ where
    open _∧_

div2-rev : (ℕ ∧ Bool ) → ℕ
div2-rev ⟪ x , true ⟫ = suc (x + x)
div2-rev ⟪ x , false ⟫ = x + x

div2-eq : (x : ℕ ) → div2-rev ( div2 x ) ≡ x
div2-eq zero = refl
div2-eq (suc zero) = refl
div2-eq (suc (suc x)) with div2 x | inspect div2 x 
... | ⟪ x1 , true ⟫ | record { eq = eq1 } = begin -- eq1 : div2 x ≡ ⟪ x1 , true ⟫
     div2-rev ⟪ suc x1 , true ⟫ ≡⟨⟩
     suc (suc (x1 + suc x1)) ≡⟨ cong (λ k → suc (suc k )) (+-comm x1  _ ) ⟩
     suc (suc (suc (x1 + x1))) ≡⟨⟩    
     suc (suc (div2-rev ⟪ x1 , true ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩ 
     suc (suc (div2-rev (div2 x)))      ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩ 
     suc (suc x) ∎  where open ≡-Reasoning
... | ⟪ x1 , false ⟫ | record { eq = eq1 } = begin
     div2-rev ⟪ suc x1 , false ⟫ ≡⟨⟩
     suc (x1 + suc x1) ≡⟨ cong (λ k → (suc k )) (+-comm x1  _ ) ⟩
     suc (suc (x1 + x1)) ≡⟨⟩    
     suc (suc (div2-rev ⟪ x1 , false ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩ 
     suc (suc (div2-rev (div2 x)))      ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩ 
     suc (suc x) ∎  where open ≡-Reasoning

sucprd : {i : ℕ } → 0 < i  → suc (pred i) ≡ i
sucprd {suc i} 0<i = refl

minus : (a b : ℕ ) →  ℕ
minus a zero = a
minus zero (suc b) = zero
minus (suc a) (suc b) = minus a b

_-_ = minus

m+= : {i j  m : ℕ } → m + i ≡ m + j → i ≡ j
m+= {i} {j} {zero} refl = refl
m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq )

+m= : {i j  m : ℕ } → i + m ≡ j + m → i ≡ j
+m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq )

less-1 :  { n m : ℕ } → suc n < m → n < m
less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n
less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt)

sa=b→a<b :  { n m : ℕ } → suc n ≡ m → n < m
sa=b→a<b {0} {suc zero} refl = s≤s z≤n
sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl)

minus+n : {x y : ℕ } → suc x > y  → minus x y + y ≡ x
minus+n {x} {zero} _ = trans (sym (+-comm zero  _ )) refl
minus+n {zero} {suc y} (s≤s ())
minus+n {suc x} {suc y} (s≤s lt) = begin
           minus (suc x) (suc y) + suc y
        ≡⟨ +-comm _ (suc y)    ⟩
           suc y + minus x y 
        ≡⟨ cong ( λ k → suc k ) (
           begin
                 y + minus x y 
              ≡⟨ +-comm y  _ ⟩
                 minus x y + y
              ≡⟨ minus+n {x} {y} lt ⟩
                 x 

           ) ⟩
           suc x
        ∎  where open ≡-Reasoning

0<s : {x : ℕ } → zero < suc x
0<s {_} = s≤s z≤n 

<-minus-0 : {x y z : ℕ } → z + x < z + y → x < y
<-minus-0 {x} {suc _} {zero} lt = lt
<-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt

<-minus : {x y z : ℕ } → x + z < y + z → x < y
<-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt )

x≤x+y : {z y : ℕ } → z ≤ z + y
x≤x+y {zero} {y} = z≤n
x≤x+y {suc z} {y} = s≤s  (x≤x+y {z} {y})

x≤y+x : {z y : ℕ } → z ≤ y + z
x≤y+x {z} {y} = subst (λ k → z ≤ k ) (+-comm _ y ) x≤x+y

<-plus : {x y z : ℕ } → x < y → x + z < y + z 
<-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y  )
<-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt)

<-plus-0 : {x y z : ℕ } → x < y → z + x < z + y 
<-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt )

≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z
≤-plus {0} {y} {zero} z≤n = z≤n
≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y 
≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt )

≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y 
≤-plus-0 {x} {y} {zero} lt = lt
≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt )

x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z 
x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n
x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 )

*≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z 
*≤ lt = *-mono-≤ lt ≤-refl

*< : {x y z : ℕ } → x < y → x * suc z < y * suc z 
*< {zero} {suc y} lt = s≤s z≤n
*< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt)

<to<s : {x y  : ℕ } → x < y → x < suc y
<to<s {zero} {suc y} (s≤s lt) = s≤s z≤n
<to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt)

<tos<s : {x y  : ℕ } → x < y → suc x < suc y
<tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n)
<tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt)

<to≤ : {x y  : ℕ } → x < y → x ≤ y 
<to≤ {zero} {suc y} (s≤s z≤n) = z≤n
<to≤ {suc x} {suc y} (s≤s lt) = s≤s (<to≤ {x} {y}  lt)

refl-≤s : {x : ℕ } → x ≤ suc x
refl-≤s {zero} = z≤n
refl-≤s {suc x} = s≤s (refl-≤s {x})

refl-≤ : {x : ℕ } → x ≤ x
refl-≤ {zero} = z≤n
refl-≤ {suc x} = s≤s (refl-≤ {x})

x<y→≤ : {x y : ℕ } → x < y →  x ≤ suc y
x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n
x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt)

open import Data.Product

i-j=0→i=j : {i j  : ℕ } → j ≤ i  → i - j ≡ 0 → i ≡ j
i-j=0→i=j {zero} {zero} _ refl = refl
i-j=0→i=j {zero} {suc j} () refl
i-j=0→i=j {suc i} {zero} z≤n ()
i-j=0→i=j {suc i} {suc j} (s≤s lt) eq = cong suc (i-j=0→i=j {i} {j} lt eq)

minus+1 : {x y  : ℕ } → y ≤ x  → suc (minus x y)  ≡ minus (suc x) y 
minus+1 {zero} {zero} y≤x = refl
minus+1 {suc x} {zero} y≤x = refl
minus+1 {suc x} {suc y} (s≤s y≤x) = minus+1 {x} {y} y≤x 

minus+yz : {x y z : ℕ } → z ≤ y  → x + minus y z  ≡ minus (x + y) z
minus+yz {zero} {y} {z} _ = refl
minus+yz {suc x} {y} {z} z≤y = begin
         suc x + minus y z ≡⟨ cong suc ( minus+yz z≤y ) ⟩
         suc (minus (x + y) z) ≡⟨ minus+1 {x + y} {z} (≤-trans z≤y (subst (λ g → y ≤ g) (+-comm y x) x≤x+y) ) ⟩
         minus (suc x + y) z ∎  where open ≡-Reasoning

minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0
minus<=0 {0} {zero} z≤n = refl
minus<=0 {0} {suc y} z≤n = refl
minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le

minus>0 : {x y : ℕ } → x < y → 0 < minus y x 
minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n
minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt

minus>0→x<y : {x y : ℕ } → 0 < minus y x  → x < y
minus>0→x<y {x} {y} lt with <-cmp x y
... | tri< a ¬b ¬c = a
... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< (sym (minus<=0 {x} ≤-refl)) lt )
... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (minus<=0 {y} (≤-trans refl-≤s c ))) lt )

minus+y-y : {x y : ℕ } → (x + y) - y  ≡ x
minus+y-y {zero} {y} = minus<=0 {zero + y} {y} ≤-refl 
minus+y-y {suc x} {y} = begin
         (suc x + y) - y ≡⟨ sym (minus+1 {_} {y} x≤y+x) ⟩
         suc ((x + y) - y) ≡⟨ cong suc (minus+y-y {x} {y}) ⟩
         suc x ∎  where open ≡-Reasoning

minus+yx-yz : {x y z : ℕ } → (y + x) - (y + z)  ≡ x - z
minus+yx-yz {x} {zero} {z} = refl
minus+yx-yz {x} {suc y} {z} = minus+yx-yz {x} {y} {z} 

minus+xy-zy : {x y z : ℕ } → (x + y) - (z + y)  ≡ x - z
minus+xy-zy {x} {y} {z} = subst₂ (λ j k → j - k ≡ x - z  ) (+-comm y x) (+-comm y z) (minus+yx-yz {x} {y} {z})

y-x<y : {x y : ℕ } → 0 < x → 0 < y  → y - x  <  y
y-x<y {x} {y} 0<x 0<y with <-cmp x (suc y)
... | tri< a ¬b ¬c = +-cancelʳ-< {x} (y - x) y ( begin
         suc ((y - x) + x) ≡⟨ cong suc (minus+n {y} {x} a ) ⟩
         suc y  ≡⟨ +-comm 1 _ ⟩
         y + suc 0  ≤⟨ +-mono-≤ ≤-refl 0<x ⟩
         y + x ∎ )  where open ≤-Reasoning
... | tri≈ ¬a refl ¬c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} refl-≤s )) 0<y
... | tri> ¬a ¬b c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} (≤-trans (≤-trans refl-≤s refl-≤s) c))) 0<y -- suc (suc y) ≤ x → y ≤ x

open import Relation.Binary.Definitions

distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z) 
distr-minus-* {x} {zero} {z} = refl
distr-minus-* {x} {suc y} {z} with <-cmp x y
distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin
          minus x (suc y) * z
        ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩
           0 * z 
        ≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩
          minus (x * z) (z + y * z) 
        ∎  where
            open ≡-Reasoning
            le : x * z ≤ z + y * z
            le  = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where
               lemma : x * z ≤ y * z
               lemma = *≤ {x} {y} {z} (<to≤ a)
distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin
          minus x (suc y) * z
        ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩
           0 * z 
        ≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩
          minus (x * z) (z + y * z) 
        ∎  where
            open ≡-Reasoning
            lt : {x z : ℕ } →  x * z ≤ z + x * z
            lt {zero} {zero} = z≤n
            lt {suc x} {zero} = lt {x} {zero}
            lt {x} {suc z} = ≤-trans lemma refl-≤s where
               lemma : x * suc z ≤   z + x * suc z
               lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z}) 
distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin
           minus x (suc y) * z + suc y * z
        ≡⟨ sym (proj₂ *-distrib-+ z  (minus x (suc y) )  _) ⟩
           ( minus x (suc y) + suc y ) * z
        ≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c))  ⟩
           x * z 
        ≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩
           minus (x * z) (suc y * z) + suc y * z
        ∎ ) where
            open ≡-Reasoning
            lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z
            lt {x} {y} {z} le = *≤ le 

distr-minus-*' : {z x y : ℕ } → z * (minus x y)  ≡ minus (z * x) (z * y) 
distr-minus-*' {z} {x} {y} = begin
        z * (minus x y) ≡⟨ *-comm _ (x - y) ⟩
        (minus x y) * z ≡⟨ distr-minus-* {x} {y} {z} ⟩
        minus (x * z) (y * z) ≡⟨ cong₂ (λ j k → j - k ) (*-comm x z ) (*-comm y z) ⟩
        minus (z * x) (z * y) ∎  where open ≡-Reasoning

minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z)
minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin
           minus (minus x y) z + z
        ≡⟨ minus+n {_} {z} lemma ⟩
           minus x y
        ≡⟨ +m= {_} {_} {y} ( begin
              minus x y + y 
           ≡⟨ minus+n {_} {y} lemma1 ⟩
              x
           ≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩
              minus x (z + y) + (z + y)
           ≡⟨ sym ( +-assoc (minus x (z + y)) _  _ ) ⟩
              minus x (z + y) + z + y
           ∎ ) ⟩
           minus x (z + y) + z
        ≡⟨ cong (λ k → minus x k + z ) (+-comm _ y )  ⟩
           minus x (y + z) + z
        ∎  ) where
             open ≡-Reasoning
             lemma1 : suc x > y
             lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt )
             lemma : suc (minus x y) > z
             lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y}  lemma1 ))  gt )

minus-* : {M k n : ℕ } → n < k  → minus k (suc n) * M ≡ minus (minus k n * M ) M
minus-* {zero} {k} {n} lt = begin
           minus k (suc n) * zero
        ≡⟨ *-comm (minus k (suc n)) zero ⟩
           zero * minus k (suc n) 
        ≡⟨⟩
           0 * minus k n 
        ≡⟨ *-comm 0 (minus k n) ⟩
           minus (minus k n * 0 ) 0
        ∎  where
        open ≡-Reasoning
minus-* {suc m} {k} {n} lt with <-cmp k 1
minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl
minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl
minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl
minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt 
minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c
minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin
           minus k (suc n) * M
        ≡⟨ distr-minus-* {k} {suc n} {M}  ⟩
           minus (k * M ) ((suc n) * M)
        ≡⟨⟩
           minus (k * M ) (M + n * M  )
        ≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩
           minus (k * M ) ((n * M) + M )
        ≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩
           minus (minus (k * M ) (n * M)) M
        ≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩
           minus (minus k n * M ) M
        ∎  where
             M = suc m
             lemma : {n k m : ℕ } → n < k  → suc (k * suc m) > suc m + n * suc m
             lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y ))
             lemma {suc n} {suc k} {m} lt = begin
                         suc (suc m + suc n * suc m) 
                      ≡⟨⟩
                         suc ( suc (suc n) * suc m)
                      ≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩
                         suc (suc k * suc m)
                      ∎   where open ≤-Reasoning
             open ≡-Reasoning

x=y+z→x-z=y : {x y z : ℕ } → x ≡ y + z → x - z ≡ y
x=y+z→x-z=y {x} {zero} {.x} refl = minus<=0 {x} {x} refl-≤ -- x ≡ suc (y + z) → (x ≡ y + z → x - z ≡ y)   → (x - z) ≡ suc y
x=y+z→x-z=y {suc x} {suc y} {zero} eq = begin -- suc x ≡ suc (y + zero) → (suc x - zero) ≡ suc y
       suc x - zero ≡⟨ refl ⟩
       suc x  ≡⟨ eq ⟩
       suc y + zero ≡⟨ +-comm _ zero ⟩
       suc y ∎  where open ≡-Reasoning
x=y+z→x-z=y {suc x} {suc y} {suc z} eq = x=y+z→x-z=y {x} {suc y} {z} ( begin
       x ≡⟨ cong pred eq ⟩
       pred (suc y + suc z) ≡⟨ +-comm _ (suc z)  ⟩
       suc z + y ≡⟨ cong suc ( +-comm _ y ) ⟩
       suc y + z ∎  ) where open ≡-Reasoning

m*1=m : {m : ℕ } → m * 1 ≡ m
m*1=m {zero} = refl
m*1=m {suc m} = cong suc m*1=m

record Finduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set  (n Level.⊔ m) where
  field
    fzero   : {p : P} → f p ≡ zero → Q p
    pnext : (p : P ) → P
    decline : {p : P} → 0 < f p  → f (pnext p) < f p
    ind : {p : P} → Q (pnext p) → Q p

y<sx→y≤x : {x y : ℕ} → y < suc x → y ≤ x
y<sx→y≤x (s≤s lt) = lt 

fi0 : (x : ℕ) → x ≤ zero → x ≡ zero
fi0 .0 z≤n = refl

f-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
  → (f : P → ℕ) 
  → Finduction P Q f
  → (p : P ) → Q p
f-induction {n} {m} {P} {Q} f I p with <-cmp 0 (f p)
... | tri> ¬a ¬b ()
... | tri≈ ¬a b ¬c = Finduction.fzero I (sym b) 
... | tri< lt _ _ = f-induction0 p (f p) (<to≤ (Finduction.decline I lt)) where 
   f-induction0 : (p : P) → (x : ℕ) → (f (Finduction.pnext I p)) ≤ x → Q p
   f-induction0 p zero le = Finduction.ind I (Finduction.fzero I (fi0 _ le)) where
   f-induction0 p (suc x) le with <-cmp (f (Finduction.pnext I p)) (suc x)
   ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a 
   ... | tri≈ ¬a b ¬c = Finduction.ind I (f-induction0 (Finduction.pnext I p) x (y<sx→y≤x f1)) where
       f1 : f (Finduction.pnext I (Finduction.pnext I p)) < suc x
       f1 = subst (λ k → f (Finduction.pnext I (Finduction.pnext I p)) < k ) b ( Finduction.decline I {Finduction.pnext I p}
         (subst (λ k → 0 < k ) (sym b) (s≤s z≤n ) ))
   ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c ) 


record Ninduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set  (n Level.⊔ m) where
  field
    pnext : (p : P ) → P
    fzero   : {p : P} → f (pnext p) ≡ zero → Q p
    decline : {p : P} → 0 < f p  → f (pnext p) < f p
    ind : {p : P} → Q (pnext p) → Q p

s≤s→≤ : { i j : ℕ} → suc i ≤ suc j → i ≤ j
s≤s→≤ (s≤s lt) = lt

n-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
  → (f : P → ℕ) 
  → Ninduction P Q f
  → (p : P ) → Q p
n-induction {n} {m} {P} {Q} f I p  = f-induction0 p (f (Ninduction.pnext I p)) ≤-refl where 
   f-induction0 : (p : P) → (x : ℕ) → (f (Ninduction.pnext I p)) ≤ x  →  Q p
   f-induction0 p zero lt = Ninduction.fzero I {p} (fi0 _ lt) 
   f-induction0 p (suc x) le with <-cmp (f (Ninduction.pnext I p)) (suc x) 
   ... | tri< (s≤s a)  ¬b ¬c = f-induction0 p x a
   ... | tri≈ ¬a b ¬c = Ninduction.ind I (f-induction0 (Ninduction.pnext I p) x (s≤s→≤ nle) ) where
      f>0 :  0 < f (Ninduction.pnext I p)
      f>0 = subst (λ k → 0 < k ) (sym b) ( s≤s z≤n ) 
      nle : suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ suc x
      nle = subst (λ k → suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ k) b (Ninduction.decline I {Ninduction.pnext I p} f>0 ) 
   ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )