Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/gcd.agda @ 206:f1370437c68e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 19 Jun 2021 10:54:51 +0900 |
parents | e97cf4fb67fa |
children | 764bc577b1e9 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module gcd where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions open import nat open import logic record Factor (n m : ℕ ) : Set where field factor : ℕ remain : ℕ is-factor : factor * n + remain ≡ m record Dividable (n m : ℕ ) : Set where field factor : ℕ is-factor : factor * n + 0 ≡ m open Factor DtoF : {n m : ℕ} → Dividable n m → Factor n m DtoF {n} {m} record { factor = f ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa } FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa } --decD : {n m : ℕ} → Dec (Dividable n m) --decD = {!!} --divdable^2 : ( n k : ℕ ) → Dividable k ( n * n ) → Dividable k n --divdable^2 n k dn2 = {!!} decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } = decf1 {n} {k} f r fa where decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n) → Factor k n decf1 {n} {k} f (suc r) fa = -- this case must be the first record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n f * k + r ≡⟨ cong pred ( begin suc ( f * k + r ) ≡⟨ +-comm _ r ⟩ r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩ (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩ (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩ f * k + suc r ≡⟨ fa ⟩ suc n ∎ ) ⟩ n ∎ ) } where open ≡-Reasoning decf1 {n} {zero} (suc f) zero fa = ⊥-elim ( nat-≡< fa ( begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩ suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩ suc zero ≤⟨ s≤s z≤n ⟩ suc n ∎ )) where open ≤-Reasoning decf1 {n} {suc k} (suc f) zero fa = record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n f * suc k + k ≡⟨ +-comm _ k ⟩ k + f * suc k ≡⟨ +-comm zero _ ⟩ (k + f * suc k) + zero ≡⟨ cong pred fa ⟩ n ∎ ) } where open ≡-Reasoning div0 : {k : ℕ} → Dividable k 0 div0 {k} = record { factor = 0; is-factor = refl } gcd1 : ( i i0 j j0 : ℕ ) → ℕ gcd1 zero i0 zero j0 with <-cmp i0 j0 ... | tri< a ¬b ¬c = i0 ... | tri≈ ¬a refl ¬c = i0 ... | tri> ¬a ¬b c = j0 gcd1 zero i0 (suc zero) j0 = 1 gcd1 zero zero (suc (suc j)) j0 = j0 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j)) gcd1 (suc zero) i0 zero j0 = 1 gcd1 (suc (suc i)) i0 zero zero = i0 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0) gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0 gcd : ( i j : ℕ ) → ℕ gcd i j = gcd1 i i j j div1 : { k : ℕ } → k > 1 → ¬ Dividable k 1 div1 {k} k>1 record { factor = (suc f) ; is-factor = fa } = ⊥-elim ( nat-≡< (sym fa) ( begin 2 ≤⟨ k>1 ⟩ k ≡⟨ +-comm 0 _ ⟩ k + 0 ≡⟨ refl ⟩ 1 * k ≤⟨ *-mono-≤ {1} {suc f} (s≤s z≤n ) ≤-refl ⟩ suc f * k ≡⟨ +-comm 0 _ ⟩ suc f * k + 0 ∎ )) where open ≤-Reasoning div-div : { i j k : ℕ } → k > 1 → Dividable k i → Dividable k j → Dividable k (i - j) ∧ Dividable k (j - i) div-div {i} {j} {suc k} k>1 di dj = div-div0 di dj where div-div1 : {i j : ℕ} → Dividable (suc k) i → Dividable (suc k) j → i < j → Dividable (suc k) (j - i) div-div1 {i} {j} record { factor = fi ; is-factor = fai } record { factor = fj ; is-factor = faj } i<j = subst (λ g → Dividable (suc k) g ) div-div3 ( div-div2 fj fi fi<fj ) where fi<fj : fi < fj fi<fj with <-cmp fi fj ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< (cong (λ g → g * suc k + 0) b) (begin suc (fi * suc k + 0) ≡⟨ cong suc fai ⟩ suc i ≤⟨ i<j ⟩ j ≡⟨ sym faj ⟩ fj * suc k + 0 ∎ )) where open ≤-Reasoning ... | tri> ¬a ¬b c = ⊥-elim ( nat-<> (*-monoˡ-< k c ) (begin suc (fi * suc k) ≡⟨ +-comm 0 _ ⟩ suc (fi * suc k + 0) ≡⟨ cong suc fai ⟩ suc i ≤⟨ i<j ⟩ j ≡⟨ sym faj ⟩ fj * suc k + 0 ≡⟨ +-comm _ 0 ⟩ fj * suc k ∎ )) where open ≤-Reasoning div-div3 : (fj * suc k) - (fi * suc k) ≡ j - i div-div3 = begin (fj * suc k) - (fi * suc k) ≡⟨ cong₂ (λ g h → g - h) (+-comm 0 (fj * suc k)) (+-comm 0 (fi * suc k)) ⟩ (fj * suc k + 0) - (fi * suc k + 0) ≡⟨ cong₂ (λ g h → g - h) faj fai ⟩ j - i ∎ where open ≡-Reasoning div-div2 : (fj fi : ℕ) → fi < fj → Dividable (suc k) ((fj * suc k) - (fi * suc k)) div-div2 zero fi i<j = subst (λ g → Dividable (suc k) g) (begin 0 ≡⟨ sym (minus<=0 {0} {fi * suc k} z≤n ) ⟩ 0 - (fi * suc k) ≡⟨ refl ⟩ (zero * suc k) - (fi * suc k) ∎ ) div0 where open ≡-Reasoning div-div2 (suc fj) fi i<j with <-cmp fi fj ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c i<j ) ... | tri≈ ¬a refl ¬c = record { factor = 1 ; is-factor = (begin 1 * suc k + 0 ≡⟨ +-comm _ 0 ⟩ 1 * suc k ≡⟨ cong suc (+-comm _ 0) ⟩ suc k ≡⟨ sym (minus+y-y {suc k} {fj * suc k}) ⟩ (suc k + fj * suc k) - (fj * suc k) ≡⟨ refl ⟩ (suc (k + fj * suc k)) - (fj * suc k) ∎ )} where open ≡-Reasoning ... | tri< fi<fj ¬b ¬c = record { factor = suc (Dividable.factor (div-div2 fj fi fi<fj )) ; is-factor = ( begin suc (Dividable.factor (div-div2 fj fi fi<fj )) * suc k + 0 ≡⟨ +-comm _ 0 ⟩ suc (Dividable.factor (div-div2 fj fi fi<fj )) * suc k ≡⟨ refl ⟩ suc k + ((Dividable.factor (div-div2 fj fi fi<fj )) * suc k ) ≡⟨ cong (λ g → suc k + g ) (+-comm 0 _) ⟩ suc k + ((Dividable.factor (div-div2 fj fi fi<fj )) * suc k + 0) ≡⟨ cong (λ g → suc k + g) (Dividable.is-factor (div-div2 fj fi fi<fj) ) ⟩ suc k + ((fj * suc k) - (fi * suc k)) ≡⟨ minus+yz {suc k} {fj * suc k} {fi * suc k} (<to≤ (*-monoˡ-< k fi<fj )) ⟩ ( (suc k + (fj * suc k)) - (fi * suc k)) ≡⟨ refl ⟩ ((suc fj * suc k) - (fi * suc k)) ∎ ) } where open ≡-Reasoning div-div0 : { i j : ℕ } → Dividable (suc k) i → Dividable (suc k) j → Dividable (suc k) (i - j) ∧ Dividable (suc k) (j - i) div-div0 {i} {j} di dj with <-cmp i j ... | tri< a ¬b ¬c = ⟪ subst (λ g → Dividable (suc k) g) (sym (minus<=0 {i} {j} (<to≤ a))) div0 , div-div1 di dj a ⟫ ... | tri≈ ¬a refl ¬c = ⟪ subst (λ g → Dividable (suc k) g) (sym (minus<=0 {i} {i} refl-≤)) div0 , subst (λ g → Dividable (suc k) g) (sym (minus<=0 {i} {i} refl-≤)) div0 ⟫ ... | tri> ¬a ¬b c = ⟪ div-div1 dj di c , subst (λ g → Dividable (suc k) g) (sym (minus<=0 {j} {i} (<to≤ c))) div0 ⟫ open _∧_ gcd-gt : ( i i0 j j0 k : ℕ ) → k > 1 → (if : Factor k i) (i0f : Dividable k i0 ) (jf : Factor k j ) (j0f : Dividable k j0) → Dividable k (i - j) ∧ Dividable k (j - i) → Dividable k ( gcd1 i i0 j j0 ) gcd-gt zero i0 zero j0 k k>1 if i0f jf j0f i-j with <-cmp i0 j0 ... | tri< a ¬b ¬c = i0f ... | tri≈ ¬a refl ¬c = i0f ... | tri> ¬a ¬b c = j0f gcd-gt zero i0 (suc zero) j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj2 i-j)) -- can't happen gcd-gt zero zero (suc (suc j)) j0 k k>1 if i0f jf j0f i-j = j0f gcd-gt zero (suc i0) (suc (suc j)) j0 k k>1 if i0f jf j0f i-j = gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k k>1 (decf (DtoF i0f)) i0f (decf jf) (proj2 i-j) (div-div k>1 i0f (proj2 i-j)) gcd-gt (suc zero) i0 zero j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj1 i-j)) -- can't happen gcd-gt (suc (suc i)) i0 zero zero k k>1 if i0f jf j0f i-j = i0f gcd-gt (suc (suc i)) i0 zero (suc j0) k k>1 if i0f jf j0f i-j = -- gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k k>1 (decf if) (proj1 i-j) (decf (DtoF j0f)) j0f (div-div k>1 (proj1 i-j) j0f ) gcd-gt (suc zero) i0 (suc j) j0 k k>1 if i0f jf j0f i-j = gcd-gt zero i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j gcd-gt (suc (suc i)) i0 (suc j) j0 k k>1 if i0f jf j0f i-j = gcd-gt (suc i) i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j gcd-div : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j ) → Dividable k ( gcd i j ) gcd-div i j k k>1 if jf = gcd-gt i i j j k k>1 (DtoF if) if (DtoF jf) jf (div-div k>1 if jf) -- open import Data.Sum.Base -- factor-0 : (i j : ℕ) → j ≤ i → Factor (i - j) 0 → i ≡ j -- factor-0 i j lt eq with m*n≡0⇒m≡0∨n≡0 (factor eq) ( m+n≡0⇒m≡0 (factor eq * (i - j)) (is-factor eq ) ) -- ... | inj₁ x = {!!} -- ... | inj₂ y = i-j=0→i=j lt y -- factor eq * (i - j) + remain eq ≡⟨ is-factor eq ⟩ gg1 : {i0 : ℕ } → 1 * i0 + 0 ≡ i0 gg1 {i0} = begin 1 * i0 + 0 ≡⟨ +-comm _ 0 ⟩ i0 + 0 ≡⟨ +-comm _ 0 ⟩ i0 ∎ where open ≡-Reasoning gg3 : {i0 : ℕ } → i0 * 1 + 0 ≡ i0 gg3 = trans (+-comm _ 0 ) m*1=m open import Data.Sum.Base gcd-divable : ( i i0 j j0 : ℕ ) → (if : Factor i0 j0) (jf : Factor j0 i0) -- factor eq * i0 + (j0 - i0) = j0 → remain if ≡ j - i → remain jf ≡ i - j → Dividable ( gcd1 i i0 j j0 ) i0 ∧ Dividable ( gcd1 i i0 j j0 ) j0 gcd-divable zero i0 zero j0 if jf if=0 jf=0 with <-cmp i0 j0 ... | tri< a ¬b ¬c = ⟪ record { factor = 1 ; is-factor = gg1 } , record { factor = factor if ; is-factor = gg2 } ⟫ where gg2 : factor if * i0 + 0 ≡ j0 gg2 = begin factor if * i0 + 0 ≡⟨ cong (λ k → factor if * i0 + k) (sym if=0) ⟩ factor if * i0 + remain if ≡⟨ is-factor if ⟩ j0 ∎ where open ≡-Reasoning ... | tri≈ ¬a refl ¬c = ⟪ record { factor = 1 ; is-factor = gg1 } , record { factor = 1 ; is-factor = gg1 } ⟫ ... | tri> ¬a ¬b c = ⟪ record { factor = factor jf ; is-factor = gg2 } , record { factor = 1 ; is-factor = gg1 } ⟫ where gg2 : factor jf * j0 + 0 ≡ i0 gg2 = begin factor jf * j0 + 0 ≡⟨ cong (λ k → factor jf * j0 + k) (sym jf=0) ⟩ factor jf * j0 + remain jf ≡⟨ is-factor jf ⟩ i0 ∎ where open ≡-Reasoning gcd-divable zero i0 (suc zero) j0 if jf if=0 jf=0 = ⟪ record { factor = i0 ; is-factor = gg3 } , record { factor = j0 ; is-factor = gg3 } ⟫ gcd-divable zero zero (suc (suc j)) j0 if jf if=0 jf=0 = ⟪ record { factor = factor jf ; is-factor = gg4 } , record { factor = 1 ; is-factor = gg1 } ⟫ where gg4 : factor jf * j0 + 0 ≡ zero gg4 with m*n≡0⇒m≡0∨n≡0 (factor jf) ( m+n≡0⇒m≡0 (factor jf * j0) (is-factor jf)) ... | inj₁ x = begin factor jf * j0 + 0 ≡⟨ +-comm _ 0 ⟩ factor jf * j0 ≡⟨ cong (λ k → k * j0) x ⟩ 0 ∎ where open ≡-Reasoning ... | inj₂ y = begin factor jf * j0 + 0 ≡⟨ +-comm _ 0 ⟩ factor jf * j0 ≡⟨ cong (λ k → factor jf * k) y ⟩ factor jf * 0 ≡⟨ *-comm (factor jf) 0 ⟩ 0 ∎ where open ≡-Reasoning gcd-divable zero (suc i0) (suc (suc j)) j0 if jf if=0 jf=0 with gcd-divable i0 (suc i0) (suc j) (suc (suc j)) record { factor = {!!} ; is-factor = {!!} ; remain = suc j - i0 } record { factor = {!!} ; is-factor = {!!} ; remain = i0 - suc j } refl refl ... | t = ⟪ record { factor = {!!} ; is-factor = {!!} } , {!!} ⟫ -- Dividable (gcd1 i0 (suc i0) (suc j) (suc (suc j))) (suc i0) gcd-divable (suc zero) i0 zero j0 if jf if=0 jf=0 = ⟪ record { factor = i0 ; is-factor = gg3 } , record { factor = j0 ; is-factor = gg3 } ⟫ gcd-divable (suc (suc i)) i0 zero zero if jf if=0 jf=0 = ⟪ record { factor = 1 ; is-factor = gg1 } , record { factor = factor if ; is-factor = gg4 } ⟫ where gg4 : factor if * i0 + 0 ≡ zero gg4 with m*n≡0⇒m≡0∨n≡0 (factor if) ( m+n≡0⇒m≡0 (factor if * i0) (is-factor if)) ... | inj₁ x = begin factor if * i0 + 0 ≡⟨ +-comm _ 0 ⟩ factor if * i0 ≡⟨ cong (λ k → k * i0) x ⟩ 0 ∎ where open ≡-Reasoning ... | inj₂ y = begin factor if * i0 + 0 ≡⟨ +-comm _ 0 ⟩ factor if * i0 ≡⟨ cong (λ k → factor if * k) y ⟩ factor if * 0 ≡⟨ *-comm (factor if) 0 ⟩ 0 ∎ where open ≡-Reasoning gcd-divable (suc (suc i)) i0 zero (suc j0) if jf if=0 jf=0 with gcd-divable (suc i) (suc (suc i)) j0 (suc j0) {!!} {!!} refl refl ... | t = ⟪ {!!} , {!!} ⟫ gcd-divable (suc zero) i0 (suc j) j0 if jf if=0 jf=0 = gcd-divable zero i0 j j0 record { factor = factor if ; is-factor = gg4 ; remain = j - zero } record { factor = factor jf ; is-factor = gg5 ; remain = zero - j } refl refl where gg4 : factor if * i0 + (j - zero) ≡ j0 gg4 = begin factor if * i0 + (j - zero) ≡⟨ cong ( λ k → factor if * i0 + k) (sym if=0) ⟩ factor if * i0 + remain if ≡⟨ is-factor if ⟩ j0 ∎ where open ≡-Reasoning gg5 : factor jf * j0 + (zero - j) ≡ i0 gg5 = begin factor jf * j0 + (zero - j) ≡⟨ cong ( λ k → factor jf * j0 + k) (sym jf=0) ⟩ factor jf * j0 + remain jf ≡⟨ is-factor jf ⟩ i0 ∎ where open ≡-Reasoning gcd-divable (suc (suc i)) i0 (suc j) j0 if jf if=0 jf=0 = gcd-divable (suc i) i0 j j0 record { factor = factor if ; is-factor = gg4 ; remain = j - suc i } record { factor = factor jf ; is-factor = gg5 ; remain = suc i - j } refl refl where gg4 : factor if * i0 + (j - suc i ) ≡ j0 gg4 = begin factor if * i0 + ( j - suc i ) ≡⟨ cong ( λ k → factor if * i0 + k ) (sym if=0) ⟩ factor if * i0 + remain if ≡⟨ is-factor if ⟩ j0 ∎ where open ≡-Reasoning gg5 : factor jf * j0 + (suc i - j) ≡ i0 gg5 = begin factor jf * j0 + ( suc i - j ) ≡⟨ cong ( λ k → factor jf * j0 + k ) (sym jf=0) ⟩ factor jf * j0 + remain jf ≡⟨ is-factor jf ⟩ i0 ∎ where open ≡-Reasoning gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0 gcd22 zero i0 zero o0 = refl gcd22 zero i0 (suc o) o0 = refl gcd22 (suc i) i0 zero o0 = refl gcd22 (suc i) i0 (suc o) o0 = refl gcd20 : (i : ℕ) → gcd i 0 ≡ i gcd20 zero = refl gcd20 (suc i) = gcd201 (suc i) where gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i gcd201 zero = refl gcd201 (suc zero) = refl gcd201 (suc (suc i)) = refl gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m gcdmm zero m with <-cmp m m ... | tri< a ¬b ¬c = refl ... | tri≈ ¬a refl ¬c = refl ... | tri> ¬a ¬b c = refl gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m ) gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i gcdsym2 i j with <-cmp i j | <-cmp j i ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁) ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c) ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c) ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁) gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0 gcdsym1 zero zero zero zero = refl gcdsym1 zero zero zero (suc j0) = refl gcdsym1 zero (suc i0) zero zero = refl gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0) gcdsym1 zero zero (suc zero) j0 = refl gcdsym1 zero zero (suc (suc j)) j0 = refl gcdsym1 zero (suc i0) (suc zero) j0 = refl gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j)) gcdsym1 (suc zero) i0 zero j0 = refl gcdsym1 (suc (suc i)) i0 zero zero = refl gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0) gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 ) gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n gcdsym {n} {m} = gcdsym1 n n m m gcd11 : ( i : ℕ ) → gcd i i ≡ i gcd11 i = gcdmm i i gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1 gcd203 zero = refl gcd203 (suc i) = gcd205 (suc i) where gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1 gcd205 zero = refl gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j) (suc (suc i)) j (suc i)) (gcd205 j) gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1 gcd204 zero = refl gcd204 (suc zero) = refl gcd204 (suc (suc zero)) = refl gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i)) gcd2 : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j gcd2 i j = gcd200 i i j j refl refl where gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1) gcd202 zero j1 = refl gcd202 (suc i) j1 = cong suc (gcd202 i j1) gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl gcd201 i i0 j j0 (suc j1) = begin gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩ gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩ gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩ gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0 gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j) gcd200 zero zero (suc zero) .1 i=i0 refl = refl gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩ suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩ gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning gcd200 zero (suc i0) (suc j) .(suc j) () refl gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩ 1 ≡⟨ sym ( gcd204 (suc j)) ⟩ gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning gcd200 (suc (suc i)) i0 (suc j) zero i=i0 () gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1 gcdmul+1 zero n = gcd204 n gcdmul+1 (suc m) n = begin gcd (suc m * n + 1) n ≡⟨⟩ gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩ m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩ m * n + (n + 1) ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩ m * n + (1 + n) ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩ m * n + 1 + n ∎ ) ⟩ gcd (m * n + 1 + n) n ≡⟨ gcd2 (m * n + 1) n ⟩ gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩ 1 ∎ where open ≡-Reasoning div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i) div+1 {i} {k} k>1 d d1 = div1 k>1 div+11 where div+11 : Dividable k 1 div+11 = subst (λ g → Dividable k g) (minus+y-y {1} {i} ) ( proj2 (div-div k>1 d d1 ) ) gcd>0 : ( i j : ℕ ) → 0 < i → 0 < j → 0 < gcd i j gcd>0 i j 0<i 0<j = gcd>01 i i j j 0<i 0<j where gcd>01 : ( i i0 j j0 : ℕ ) → 0 < i0 → 0 < j0 → gcd1 i i0 j j0 > 0 gcd>01 zero i0 zero j0 0<i 0<j with <-cmp i0 j0 ... | tri< a ¬b ¬c = 0<i ... | tri≈ ¬a refl ¬c = 0<i ... | tri> ¬a ¬b c = 0<j gcd>01 zero i0 (suc zero) j0 0<i 0<j = s≤s z≤n gcd>01 zero zero (suc (suc j)) j0 0<i 0<j = 0<j gcd>01 zero (suc i0) (suc (suc j)) j0 0<i 0<j = gcd>01 i0 (suc i0) (suc j) (suc (suc j)) 0<i (s≤s z≤n) -- 0 < suc (suc j) gcd>01 (suc zero) i0 zero j0 0<i 0<j = s≤s z≤n gcd>01 (suc (suc i)) i0 zero zero 0<i 0<j = 0<i gcd>01 (suc (suc i)) i0 zero (suc j0) 0<i 0<j = gcd>01 (suc i) (suc (suc i)) j0 (suc j0) (s≤s z≤n) 0<j gcd>01 (suc i) i0 (suc j) j0 0<i 0<j = subst (λ k → 0 < k ) (sym (gcd033 i i0 j j0 )) (gcd>01 i i0 j j0 0<i 0<j ) where gcd033 : (i i0 j j0 : ℕ) → gcd1 (suc i) i0 (suc j) j0 ≡ gcd1 i i0 j j0 gcd033 zero zero zero zero = refl gcd033 zero zero (suc j) zero = refl gcd033 (suc i) zero j zero = refl gcd033 zero zero zero (suc j0) = refl gcd033 (suc i) zero zero (suc j0) = refl gcd033 zero zero (suc j) (suc j0) = refl gcd033 (suc i) zero (suc j) (suc j0) = refl gcd033 zero (suc i0) j j0 = refl gcd033 (suc i) (suc i0) j j0 = refl