view automaton-in-agda/src/fin.agda @ 286:f49c6d768e19

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 28 Dec 2021 02:43:07 +0900
parents 6e85b8b0d8db
children ce16779e72a5
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-} 

module fin where

open import Data.Fin hiding (_<_ ; _≤_ ; _>_ ; _+_ )
open import Data.Fin.Properties hiding (≤-trans ;  <-trans ;  ≤-refl  ) renaming ( <-cmp to <-fcmp )
open import Data.Nat
open import Data.Nat.Properties
open import logic
open import nat
open import Relation.Binary.PropositionalEquality


-- toℕ<n
fin<n : {n : ℕ} {f : Fin n} → toℕ f < n
fin<n {_} {zero} = s≤s z≤n
fin<n {suc n} {suc f} = s≤s (fin<n {n} {f})

-- toℕ≤n
fin≤n : {n : ℕ} (f : Fin (suc n)) → toℕ f ≤ n
fin≤n {_} zero = z≤n
fin≤n {suc n} (suc f) = s≤s (fin≤n {n} f)

pred<n : {n : ℕ} {f : Fin (suc n)} → n > 0  → Data.Nat.pred (toℕ f) < n
pred<n {suc n} {zero} (s≤s z≤n) = s≤s z≤n
pred<n {suc n} {suc f} (s≤s z≤n) = fin<n

fin<asa : {n : ℕ} → toℕ (fromℕ< {n} a<sa) ≡ n
fin<asa = toℕ-fromℕ< nat.a<sa

-- fromℕ<-toℕ
toℕ→from : {n : ℕ} {x : Fin (suc n)} → toℕ x ≡ n → fromℕ n ≡ x
toℕ→from {0} {zero} refl = refl
toℕ→from {suc n} {suc x} eq = cong (λ k → suc k ) ( toℕ→from {n} {x} (cong (λ k → Data.Nat.pred k ) eq ))

0≤fmax : {n : ℕ } → (# 0) Data.Fin.≤ fromℕ< {n} a<sa
0≤fmax  = subst (λ k → 0 ≤ k ) (sym (toℕ-fromℕ< a<sa)) z≤n

0<fmax : {n : ℕ } → (# 0) Data.Fin.< fromℕ< {suc n} a<sa
0<fmax = subst (λ k → 0 < k ) (sym (toℕ-fromℕ< a<sa)) (s≤s z≤n)

-- toℕ-injective
i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j
i=j {suc n} zero zero refl = refl
i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) )

-- raise 1
fin+1 :  { n : ℕ } → Fin n → Fin (suc n)
fin+1  zero = zero 
fin+1  (suc x) = suc (fin+1 x)

open import Data.Nat.Properties as NatP  hiding ( _≟_ )

fin+1≤ : { i n : ℕ } → (a : i < n)  → fin+1 (fromℕ< a) ≡ fromℕ< (<-trans a a<sa)
fin+1≤ {0} {suc i} (s≤s z≤n) = refl
fin+1≤ {suc n} {suc (suc i)} (s≤s (s≤s a)) = cong (λ k → suc k ) ( fin+1≤ {n} {suc i} (s≤s a) )

fin+1-toℕ : { n : ℕ } → { x : Fin n} → toℕ (fin+1 x) ≡ toℕ x
fin+1-toℕ {suc n} {zero} = refl
fin+1-toℕ {suc n} {suc x} = cong (λ k → suc k ) (fin+1-toℕ {n} {x})

open import Relation.Nullary 
open import Data.Empty

fin-1 :  { n : ℕ } → (x : Fin (suc n)) → ¬ (x ≡ zero )  → Fin n
fin-1 zero ne = ⊥-elim (ne refl )
fin-1 {n} (suc x) ne = x 

fin-1-sx : { n : ℕ } → (x : Fin n) →  fin-1 (suc x) (λ ()) ≡ x 
fin-1-sx zero = refl
fin-1-sx (suc x) = refl

fin-1-xs : { n : ℕ } → (x : Fin (suc n)) → (ne : ¬ (x ≡ zero ))  → suc (fin-1 x ne ) ≡ x
fin-1-xs zero ne = ⊥-elim ( ne refl )
fin-1-xs (suc x) ne = refl

-- suc-injective
-- suc-eq : {n : ℕ } {x y : Fin n} → Fin.suc x ≡ Fin.suc y  → x ≡ y
-- suc-eq {n} {x} {y} eq = subst₂ (λ j k → j ≡ k ) {!!} {!!} (cong (λ k → Data.Fin.pred k ) eq )

-- this is refl
lemma3 : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt)
lemma3 (s≤s lt) = refl

-- fromℕ<-toℕ 
lemma12 : {n m : ℕ } → (n<m : n < m ) → (f : Fin m )  → toℕ f ≡ n → f ≡ fromℕ< n<m 
lemma12 {zero} {suc m} (s≤s z≤n) zero refl = refl
lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl =  cong suc ( lemma12 {n} {m} n<m f refl  ) 

open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 

-- <-irrelevant
<-nat=irr : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n  
<-nat=irr {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl
<-nat=irr {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( <-nat=irr {i} {i} {n} refl  )

lemma8 : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n  
lemma8 {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl
lemma8 {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8 {i} {i} {n} refl  )

-- fromℕ<-irrelevant 
lemma10 : {n i j  : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n }  → fromℕ< i<n ≡ fromℕ< j<n
lemma10 {n} refl  = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8 refl  ))

lemma31 : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c
lemma31 {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8 refl) 

-- toℕ-fromℕ<
lemma11 : {n m : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x
lemma11 {n} {m} {x} n<m  = begin
              toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m))
           ≡⟨ toℕ-fromℕ< _ ⟩
              toℕ x
           ∎  where
               open ≡-Reasoning

x<y→fin-1 : {n : ℕ } → { x y : Fin (suc n)} →  toℕ x < toℕ y  → Fin n
x<y→fin-1 {n} {x} {y} lt = fromℕ< (≤-trans lt (fin≤n _ ))

x<y→fin-1-eq : {n : ℕ } → { x y : Fin (suc n)} → (lt : toℕ x < toℕ y ) → toℕ x ≡ toℕ (x<y→fin-1 lt )
x<y→fin-1-eq {n} {x} {y} lt = sym ( begin
           toℕ (fromℕ< (≤-trans lt (fin≤n y)) ) ≡⟨ toℕ-fromℕ< _ ⟩
           toℕ x  ∎  ) where open ≡-Reasoning

open import Data.List
open import Relation.Binary.Definitions

fin-phase2 : { n : ℕ }  (q : Fin n) (qs : List (Fin n) ) → Bool
fin-phase2 q [] = false
fin-phase2 q (x ∷ qs) with <-fcmp q x
... | tri< a ¬b ¬c = fin-phase2 q qs
... | tri≈ ¬a b ¬c = true
... | tri> ¬a ¬b c = fin-phase2 q qs
fin-phase1 : { n : ℕ }  (q : Fin n) (qs : List (Fin n) ) → Bool
fin-phase1 q [] = false
fin-phase1 q (x ∷ qs) with <-fcmp q x
... | tri< a ¬b ¬c = fin-phase1 q qs
... | tri≈ ¬a b ¬c = fin-phase2 q qs
... | tri> ¬a ¬b c = fin-phase1 q qs

fin-dup-in-list : { n : ℕ}  (q : Fin n) (qs : List (Fin n) ) → Bool
fin-dup-in-list {n} q qs = fin-phase1 q qs

record FDup-in-list (n : ℕ ) (qs : List (Fin n))  : Set where
   field
      dup : Fin n
      is-dup : fin-dup-in-list dup qs ≡ true

list-less : {n : ℕ } → List (Fin (suc n)) → List (Fin n)
list-less [] = []
list-less {n} (i ∷ ls) with NatP.<-cmp (toℕ i) n
... | tri< a ¬b ¬c = fromℕ< a ∷ list-less ls
... | tri≈ ¬a b ¬c = list-less ls
... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n i) c )

record NList (n : ℕ) (qs : List (Fin (suc n))) : Set where
  field
     ls : List (Fin n)
     lseq : list-less qs ≡ ls
     ls< : (length ls ≡ length qs) ∨ (suc (length ls) ≡ length qs) 

fin-dup-in-list>n : {n : ℕ } → (qs : List (Fin n))  → (len> : length qs > n ) → FDup-in-list n qs
fin-dup-in-list>n {zero} [] ()
fin-dup-in-list>n {zero} (() ∷ qs) lt
fin-dup-in-list>n {suc n} qs lt = fdup-phase0 where
     open import Level using ( Level )
     fdup+1 : (qs : List (Fin (suc n))) (i : Fin n) → fin-dup-in-list i (list-less qs) ≡ true → fin-dup-in-list (fin+1 i) qs ≡ true 
     fdup+1 qs i p = f1-phase1 qs p where
          f1-phase2 : (qs : List (Fin (suc n)) ) → fin-phase2 i (list-less qs) ≡ true → fin-phase2 (fin+1 i) qs ≡ true 
          f1-phase2 (x ∷ qs) p with NatP.<-cmp (toℕ x) n
          f1-phase2 (x ∷ qs) p | tri< a ¬b ¬c with <-fcmp (fin+1 i) x
          ... | tri< a₁ ¬b₁ ¬c₁ = f1-phase2 qs {!!}
          ... | tri≈ ¬a b ¬c₁ = refl
          ... | tri> ¬a ¬b₁ c = f1-phase2 qs {!!}
          f1-phase2 (x ∷ qs) p | tri≈ ¬a b ¬c = {!!}
          f1-phase2 (x ∷ qs) p | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n x) c )
          f1-phase1 : (qs : List (Fin (suc n)) ) → fin-phase1 i (list-less qs) ≡ true → fin-phase1 (fin+1 i) qs ≡ true 
          f1-phase1 [] ()
          f1-phase1 (x ∷ qs) p with <-fcmp (fin+1 i) x
          ... | tri< a ¬b ¬c = f1-phase1 qs {!!}
          ... | tri≈ ¬a b ¬c = f1-phase2 qs {!!}
          ... | tri> ¬a ¬b c = f1-phase1 qs {!!}
     fdup-phase2 : (qs : List (Fin (suc n)) ) 
         → ( fin-phase2 (fromℕ< a<sa ) qs ≡ true )  ∨ NList n qs
     fdup-phase2 []  = case2  record { ls = [] ; lseq = refl ; ls< = case1 refl }
     fdup-phase2 (x ∷ qs)  with <-fcmp (fromℕ< a<sa) x
     ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k) (sym fin<asa) fin<n ))
     fdup-phase2 (x ∷ qs)  | tri≈ ¬a b ¬c = case1 refl
     fdup-phase2 (x ∷ qs)  | tri> ¬a ¬b c with fdup-phase2 qs 
     ... | case1 p = case1 p
     ... | case2 nlist = case2 record { ls = x<y→fin-1 c ∷ NList.ls nlist ; lseq = fdup01 ; ls< = case1 {!!} } where
           fdup01 : list-less (x ∷ qs) ≡ x<y→fin-1 c ∷ NList.ls nlist
           fdup01 with NatP.<-cmp (toℕ x) n
           ... | tri< a ¬b ¬c = begin
                fromℕ< a ∷ list-less qs ≡⟨ cong₂ (λ j k → j ∷ k ) (lemma10 refl) (NList.lseq nlist) ⟩
                fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa))) ∷ NList.ls nlist ∎  where open ≡-Reasoning
           ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (subst (λ k → toℕ x < k ) fin<asa c ))
           ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n x) c )
     fdup-phase1 : (qs : List (Fin (suc n)) ) → (fin-phase1  (fromℕ< a<sa) qs ≡ true)  ∨ NList n qs
     fdup-phase1 [] = case2  record { ls = [] ; lseq = refl ; ls< = case1 refl  }
     fdup-phase1 (x ∷ qs) with  <-fcmp (fromℕ< a<sa) x
     fdup-phase1 (x ∷ qs) | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k) (sym fin<asa) fin<n ))
     fdup-phase1 (x ∷ qs) | tri≈ ¬a b ¬c with fdup-phase2 qs 
     ... | case1 p = case1 p
     ... | case2 nlist = case2 record { ls = NList.ls nlist ; lseq = {!!} ; ls< = case2 {!!} } where
           fdup03 : list-less (x ∷ qs) ≡ NList.ls nlist
           fdup03 = {!!}
           fdup06 : suc (length (NList.ls nlist)) ≡ length (x ∷ qs) 
           fdup06 = {!!}
     fdup-phase1 (x ∷ qs) | tri> ¬a ¬b c with fdup-phase1 qs  
     ... | case1 p = case1 p
     ... | case2 nlist = case2 record { ls = x<y→fin-1 c ∷ NList.ls nlist ; lseq = {!!} ; ls< = case1 fdup5 } where
           fdup5 : length (x<y→fin-1 c ∷ NList.ls nlist) ≡ length (x ∷ qs)
           fdup5 = {!!}
     fdup-phase0 : FDup-in-list (suc n) qs 
     fdup-phase0 with fdup-phase1 qs 
     ... | case1 dup   = record { dup =  fromℕ< a<sa ; is-dup = dup }
     ... | case2 nlist = record { dup = fin+1 (FDup-in-list.dup fdup)
              ; is-dup = fdup+1 qs (FDup-in-list.dup fdup) (FDup-in-list.is-dup fdup) } where
           fdup04 : (length (NList.ls nlist) ≡ length qs) ∨ (suc (length (NList.ls nlist)) ≡ length qs)  → length (list-less qs) > n
           fdup04 (case1 eq)  =  px≤py ( begin 
              suc (suc n)  ≤⟨ lt ⟩
              length qs  ≡⟨ sym eq ⟩
              length (NList.ls nlist)  ≡⟨ cong (λ k → length k) (sym (NList.lseq nlist )) ⟩
              length (list-less qs) ≤⟨ refl-≤s ⟩
              suc (length (list-less qs)) ∎  ) where open ≤-Reasoning
           fdup04 (case2 eq) =  px≤py ( begin
              suc (suc n)  ≤⟨ lt ⟩
              length qs  ≡⟨ sym eq ⟩
              suc (length (NList.ls nlist))  ≡⟨ cong (λ k → suc (length k)) (sym (NList.lseq nlist )) ⟩
              suc (length (list-less qs)) ∎ )  where open ≤-Reasoning
           fdup : FDup-in-list n (list-less qs)
           fdup = fin-dup-in-list>n (list-less qs) ( fdup04 (NList.ls< nlist)  )