Mercurial > hg > Members > kono > Proof > automaton
view agda/root2.agda @ 143:f896c112f01f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 29 Dec 2020 15:32:57 +0900 |
parents | 3294dbcccfe8 |
children | 34fec132be3d |
line wrap: on
line source
module root2 where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions even : (n : ℕ ) → Set even zero = ⊤ even (suc zero) = ⊥ even (suc (suc n)) = even n even? : (n : ℕ ) → Dec ( even n ) even? zero = yes tt even? (suc zero) = no (λ ()) even? (suc (suc n)) = even? n n+even : {n m : ℕ } → even n → even m → even ( n + m ) n+even {zero} {zero} tt tt = tt n+even {zero} {suc m} tt em = em n+even {suc (suc n)} {m} en em = n+even {n} {m} en em n*even : {m n : ℕ } → even n → even ( m * n ) n*even {zero} {n} en = tt n*even {suc m} {n} en = n+even {n} {m * n} en (n*even {m} {n} en) even*n : {n m : ℕ } → even n → even ( n * m ) even*n {n} {m} en = subst even (*-comm m n) (n*even {m} {n} en) gcd1 : ( i i0 j j0 : ℕ ) → ℕ gcd1 zero i0 zero j0 = i0 gcd1 zero i0 (suc zero) j0 = 1 gcd1 zero zero (suc (suc j)) j0 = j0 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j)) gcd1 (suc zero) i0 zero j0 = 1 gcd1 (suc (suc i)) i0 zero zero = i0 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0) gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0 gcd : ( i j : ℕ ) → ℕ gcd i j = gcd1 i i j j even→gcd=2 : {n : ℕ} → even n → n > 0 → gcd n 2 ≡ 2 even→gcd=2 {suc (suc zero)} en (s≤s z≤n) = refl even→gcd=2 {suc (suc (suc (suc n)))} en (s≤s z≤n) = begin gcd (suc (suc (suc (suc n)))) 2 ≡⟨⟩ gcd (suc (suc n)) 2 ≡⟨ even→gcd=2 {suc (suc n)} en (s≤s z≤n) ⟩ 2 ∎ where open ≡-Reasoning open import nat gcd24' : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd (n - m) m gcd24' = {!!} gcd24 : { n m k : ℕ} → n > 1 → m > 1 → k > 1 → gcd n k ≡ k → gcd m k ≡ k → ¬ ( gcd n m ≡ 1 ) gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = gcd21 n n m m k k 1<n 1<m 1<k gn gm gnm where gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0 gcd22 zero i0 zero o0 = refl gcd22 zero i0 (suc o) o0 = refl gcd22 (suc i) i0 zero o0 = refl gcd22 (suc i) i0 (suc o) o0 = refl 1<ss : {j : ℕ} → 1 < suc (suc j) 1<ss = s≤s (s≤s z≤n) gcd21 : ( i i0 j j0 o o0 : ℕ ) → 1 < i0 → 1 < j0 → 1 < o0 → gcd1 i i0 o o0 ≡ k → gcd1 j j0 o o0 ≡ k → gcd1 i i0 j j0 ≡ 1 → ⊥ gcd21 zero .1 zero j0 o o0 1<i 1<j 1<o gn gm refl = nat-<≡ 1<i gcd21 zero i0 (suc zero) j0 zero o0 1<i 1<j 1<o refl gm gnm = nat-≡< gm 1<i gcd21 zero (suc i0) (suc (suc j)) j0 zero (suc o0) 1<i 1<j 1<o refl gm gnm = {!!} where gcd23 : gcd1 (suc j) (suc (suc j)) o0 (suc o0) ≡ suc i0 → gcd1 i0 (suc i0) (suc j) (suc (suc j)) ≡ 1 → ⊥ gcd23 = {!!} gcd21 zero i0 (suc j) j0 (suc zero) o0 1<i 1<j 1<o refl gm gnm = ⊥-elim ( nat-<≡ 1<k ) gcd21 zero i0 (suc j) j0 (suc (suc o)) o0 1<i 1<j 1<o gn gm gnm = {!!} gcd21 (suc i) i0 zero j0 o o0 1<i 1<j 1<o gn refl gnm = {!!} gcd21 (suc i) i0 (suc j) j0 zero o0 1<i 1<j 1<o gn gm gnm = {!!} gcd21 (suc i) i0 (suc j) j0 (suc o) o0 1<i 1<j 1<o gn gm gnm = gcd21 i i0 j j0 o o0 1<i 1<j 1<o (subst (λ m → m ≡ k) (gcd22 i i0 _ _ ) gn) (subst (λ m → m ≡ k) (gcd22 j j0 _ _ ) gm) (subst (λ k → k ≡ 1) (gcd22 i i0 _ _ ) gnm) record Even (i : ℕ) : Set where field j : ℕ is-twice : i ≡ 2 * j e2 : (i : ℕ) → even i → Even i e2 zero en = record { j = 0 ; is-twice = refl } e2 (suc (suc i)) en = record { j = suc (Even.j (e2 i en )) ; is-twice = e21 } where e21 : suc (suc i) ≡ 2 * suc (Even.j (e2 i en)) e21 = begin suc (suc i) ≡⟨ cong (λ k → suc (suc k)) (Even.is-twice (e2 i en)) ⟩ suc (suc (2 * Even.j (e2 i en))) ≡⟨ sym (*-distribˡ-+ 2 1 _) ⟩ 2 * suc (Even.j (e2 i en)) ∎ where open ≡-Reasoning record Odd (i : ℕ) : Set where field j : ℕ is-twice : i ≡ suc (2 * j ) odd2 : (i : ℕ) → ¬ even i → even (suc i) odd2 zero ne = ⊥-elim ( ne tt ) odd2 (suc zero) ne = tt odd2 (suc (suc i)) ne = odd2 i ne odd3 : (i : ℕ) → ¬ even i → Odd i odd3 zero ne = ⊥-elim ( ne tt ) odd3 (suc zero) ne = record { j = 0 ; is-twice = refl } odd3 (suc (suc i)) ne = record { j = Even.j (e2 (suc i) (odd2 i ne)) ; is-twice = odd31 } where odd31 : suc (suc i) ≡ suc (2 * Even.j (e2 (suc i) (odd2 i ne))) odd31 = begin suc (suc i) ≡⟨ cong suc (Even.is-twice (e2 (suc i) (odd2 i ne))) ⟩ suc (2 * (Even.j (e2 (suc i) (odd2 i ne)))) ∎ where open ≡-Reasoning odd4 : (i : ℕ) → even i → ¬ even ( suc i ) odd4 (suc (suc i)) en en1 = odd4 i en en1 even^2 : {n : ℕ} → even ( n * n ) → even n even^2 {n} en with even? n ... | yes y = y ... | no ne = ⊥-elim ( odd4 ((2 * m) + 2 * m * suc (2 * m)) (n+even {2 * m} {2 * m * suc (2 * m)} ee3 ee4) (subst (λ k → even k) ee2 en )) where m : ℕ m = Odd.j ( odd3 n ne ) ee3 : even (2 * m) ee3 = subst (λ k → even k ) (*-comm m 2) (n*even {m} {2} tt ) ee4 : even ((2 * m) * suc (2 * m)) ee4 = even*n {(2 * m)} {suc (2 * m)} (even*n {2} {m} tt ) ee2 : n * n ≡ suc (2 * m) + ((2 * m) * (suc (2 * m) )) ee2 = begin n * n ≡⟨ cong ( λ k → k * k) (Odd.is-twice (odd3 n ne)) ⟩ suc (2 * m) * suc (2 * m) ≡⟨ *-distribʳ-+ (suc (2 * m)) 1 ((2 * m) ) ⟩ (1 * suc (2 * m)) + 2 * m * suc (2 * m) ≡⟨ cong (λ k → k + 2 * m * suc (2 * m)) (begin suc m + 1 * m + 0 * (suc m + 1 * m ) ≡⟨ +-comm (suc m + 1 * m) 0 ⟩ suc m + 1 * m ≡⟨⟩ suc (2 * m) ∎) ⟩ suc (2 * m) + 2 * m * suc (2 * m) ∎ where open ≡-Reasoning open import nat e3 : {i j : ℕ } → 2 * i ≡ 2 * j → i ≡ j e3 {zero} {zero} refl = refl e3 {suc x} {suc y} eq with <-cmp x y ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (s≤s (<-trans (<-plus a) (<-plus-0 (s≤s (<-plus a )))))) ... | tri≈ ¬a b ¬c = cong suc b ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (s≤s (<-trans (<-plus c) (<-plus-0 (s≤s (<-plus c )))))) record Rational : Set where field i j : ℕ coprime : gcd i j ≡ 1 root2-irrational : ( n m : ℕ ) → n > 1 → m > 1 → 2 * n * n ≡ m * m → ¬ (gcd n m ≡ 1) root2-irrational n m n>1 m>1 2nm = gcd24 {n} {m} n>1 m>1 (s≤s (s≤s z≤n)) (even→gcd=2 rot7 (rot5 n>1)) (even→gcd=2 ( even^2 {m} ( rot1)) (rot5 m>1))where rot5 : {n : ℕ} → n > 1 → n > 0 rot5 {n} lt = <-trans a<sa lt rot1 : even ( m * m ) rot1 = subst (λ k → even k ) rot4 (n*even {n * n} {2} tt ) where rot4 : (n * n) * 2 ≡ m * m rot4 = begin (n * n) * 2 ≡⟨ *-comm (n * n) 2 ⟩ 2 * ( n * n ) ≡⟨ sym (*-assoc 2 n n) ⟩ 2 * n * n ≡⟨ 2nm ⟩ m * m ∎ where open ≡-Reasoning E : Even m E = e2 m ( even^2 {m} ( rot1 )) rot2 : 2 * n * n ≡ 2 * Even.j E * m rot2 = subst (λ k → 2 * n * n ≡ k * m ) (Even.is-twice E) 2nm rot3 : n * n ≡ Even.j E * m rot3 = e3 ( begin 2 * (n * n) ≡⟨ sym (*-assoc 2 n _) ⟩ 2 * n * n ≡⟨ rot2 ⟩ 2 * Even.j E * m ≡⟨ *-assoc 2 (Even.j E) m ⟩ 2 * (Even.j E * m) ∎ ) where open ≡-Reasoning rot7 : even n rot7 = even^2 {n} (subst (λ k → even k) (sym rot3) ((n*even {Even.j E} {m} ( even^2 {m} ( rot1 )))))