view agda/nfa136.agda @ 104:fba1cd54581d

use exists in cond, nfa example
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 14 Nov 2019 05:13:49 +0900
parents
children b3f05cd08d24
line wrap: on
line source

module nfa136 where

open import logic
open import nfa
open import automaton hiding ( StatesQ )
open import Data.List
open import finiteSet
open import Data.Fin
open import  Relation.Binary.PropositionalEquality hiding ( [_] )

data  StatesQ   : Set  where
   q1 : StatesQ
   q2 : StatesQ
   q3 : StatesQ

data  A2   : Set  where
   a0 : A2
   b0 : A2

finStateQ : FiniteSet StatesQ 
finStateQ = record {
        Q←F = Q←F
      ; F←Q  = F←Q
      ; finiso→ = finiso→
      ; finiso← = finiso←
   } where
       Q←F : Fin 3 → StatesQ
       Q←F zero = q1
       Q←F (suc zero) = q2
       Q←F (suc (suc zero)) = q3
       F←Q : StatesQ → Fin 3
       F←Q q1 = zero
       F←Q q2 = suc zero
       F←Q q3 = suc (suc zero)
       finiso→ : (q : StatesQ) → Q←F (F←Q q) ≡ q
       finiso→ q1 = refl
       finiso→ q2 = refl
       finiso→ q3 = refl
       finiso← : (f : Fin 3) → F←Q (Q←F f) ≡ f
       finiso← zero = refl
       finiso← (suc zero) = refl
       finiso← (suc (suc zero)) = refl
       finiso← (suc (suc (suc ()))) 

transition136 : StatesQ  → A2  → StatesQ → Bool
transition136 q1 b0 q2 = true
transition136 q1 a0 q1 = true  -- q1 → ep → q3
transition136 q2 a0 q2 = true
transition136 q2 a0 q3 = true
transition136 q2 b0 q3 = true
transition136 q3 a0 q1 = true
transition136 _ _ _ = false

end136 : StatesQ → Bool
end136  q1 = true
end136  _ = false

start136 : StatesQ → Bool
start136 q1 = true
start136 _ = false

nfa136 :  NAutomaton  StatesQ A2
nfa136 =  record { Nδ = transition136; Nend = end136 }

example136-1 = Naccept nfa136 finStateQ start136( a0  ∷ b0  ∷ a0 ∷ a0 ∷ [] )

example136-0 = Naccept nfa136 finStateQ start136( a0 ∷ [] )

example136-2 = Naccept nfa136 finStateQ start136( b0  ∷ a0  ∷ b0 ∷ a0 ∷ b0 ∷ [] )

open FiniteSet

nx : (StatesQ → Bool) → (List A2 ) → StatesQ → Bool
nx now [] = now
nx now ( i ∷ ni ) = (Nmoves nfa136 finStateQ (nx now ni) i )

example136-3 = to-list finStateQ start136
example136-4 = to-list finStateQ (nx start136  ( a0  ∷ b0 ∷ a0 ∷ [] ))

open import sbconst2

fm136 : Automaton ( StatesQ → Bool  )  A2
-- fm136  = record { δ = λ qs q → transition136 {!!} {!!}  ; aend = λ qs → exists finStateQ end136 }
fm136  = subset-construction finStateQ nfa136 q1

open NAutomaton

lemma136 : ( x : List A2 ) → Naccept nfa136 finStateQ start136 x  ≡ accept fm136 start136 x 
lemma136 x = lemma136-1 x start136 where
    lemma136-1 : ( x : List A2 ) → ( states : StatesQ → Bool )
        → Naccept nfa136 finStateQ states x  ≡ accept fm136 states x 
    lemma136-1 [] _ = refl
    lemma136-1 (h ∷ t) states = lemma136-1 t (δconv finStateQ (Nδ nfa136) states h)