{-# OPTIONS --allow-unsolved-metas #-} open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.List hiding ( [_] ) open import Data.Empty open import finiteSet open import fin module derive ( Σ : Set) ( fin : FiniteSet Σ ) ( eq? : (x y : Σ) → Dec (x ≡ y)) where open import automaton open import logic open import regex open import regular-language -- whether a regex accepts empty input -- empty? : Regex Σ → Bool empty? ε = true empty? φ = false empty? (x *) = true empty? (x & y) = empty? x /\ empty? y empty? (x || y) = empty? x \/ empty? y empty? < x > = false derivative : Regex Σ → Σ → Regex Σ derivative ε s = φ derivative φ s = φ derivative (x *) s with derivative x s ... | ε = x * ... | φ = φ ... | t = t & (x *) derivative (x & y) s with empty? x ... | true with derivative x s | derivative y s ... | ε | φ = φ ... | ε | t = t || y ... | φ | t = t ... | x1 | φ = x1 & y ... | x1 | y1 = (x1 & y) || y1 derivative (x & y) s | false with derivative x s ... | ε = y ... | φ = φ ... | t = t & y derivative (x || y) s with derivative x s | derivative y s ... | φ | y1 = y1 ... | x1 | φ = x1 ... | x1 | y1 = x1 || y1 derivative < x > s with eq? x s ... | yes _ = ε ... | no _ = φ data regex-states (x : Regex Σ ) : Regex Σ → Set where unit : { z : Regex Σ} → z ≡ x → regex-states x z derive : { y z : Regex Σ } → regex-states x y → (s : Σ) → z ≡ derivative y s → regex-states x z record Derivative (x : Regex Σ ) : Set where field state : Regex Σ is-derived : regex-states x state open Derivative derive-step : (r : Regex Σ) (d0 : Derivative r) → (s : Σ) → regex-states r (derivative (state d0) s) derive-step r d0 s = derive (is-derived d0) s refl regex→automaton : (r : Regex Σ) → Automaton (Derivative r) Σ regex→automaton r = record { δ = λ d s → record { state = derivative (state d) s ; is-derived = derive (is-derived d) s refl } ; aend = λ d → empty? (state d) } regex-match : (r : Regex Σ) → (List Σ) → Bool regex-match ex is = accept ( regex→automaton ex ) record { state = ex ; is-derived = unit refl } is -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- open import nfa open import Data.Nat open import Data.Nat.Properties hiding ( eq? ) open import nat open import finiteSetUtil open FiniteSet open import Data.Fin hiding (_<_ ; _≤_ ; pred ) -- finiteness of derivative -- term generate x & y for each * and & only once -- rank : Regex → ℕ -- r₀ & r₁ ... r -- generated state is a subset of the term set open import Relation.Binary.Definitions open _∧_ fb20 : {r s r₁ s₁ : Regex Σ} → r & r₁ ≡ s & s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) fb20 refl = ⟪ refl , refl ⟫ fb21 : {r s r₁ s₁ : Regex Σ} → r || r₁ ≡ s || s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) fb21 refl = ⟪ refl , refl ⟫ rg-eq? : (r s : Regex Σ) → Dec ( r ≡ s ) rg-eq? ε ε = yes refl rg-eq? ε φ = no (λ ()) rg-eq? ε (s *) = no (λ ()) rg-eq? ε (s & s₁) = no (λ ()) rg-eq? ε (s || s₁) = no (λ ()) rg-eq? ε < x > = no (λ ()) rg-eq? φ ε = no (λ ()) rg-eq? φ φ = yes refl rg-eq? φ (s *) = no (λ ()) rg-eq? φ (s & s₁) = no (λ ()) rg-eq? φ (s || s₁) = no (λ ()) rg-eq? φ < x > = no (λ ()) rg-eq? (r *) ε = no (λ ()) rg-eq? (r *) φ = no (λ ()) rg-eq? (r *) (s *) with rg-eq? r s ... | yes eq = yes ( cong (_*) eq) ... | no ne = no (λ eq → ne (fb10 eq) ) where fb10 : {r s : Regex Σ} → (r *) ≡ (s *) → r ≡ s fb10 refl = refl rg-eq? (r *) (s & s₁) = no (λ ()) rg-eq? (r *) (s || s₁) = no (λ ()) rg-eq? (r *) < x > = no (λ ()) rg-eq? (r & r₁) ε = no (λ ()) rg-eq? (r & r₁) φ = no (λ ()) rg-eq? (r & r₁) (s *) = no (λ ()) rg-eq? (r & r₁) (s & s₁) with rg-eq? r s | rg-eq? r₁ s₁ ... | yes y | yes y₁ = yes ( cong₂ _&_ y y₁) ... | yes y | no n = no (λ eq → n (proj2 (fb20 eq) )) ... | no n | yes y = no (λ eq → n (proj1 (fb20 eq) )) ... | no n | no n₁ = no (λ eq → n (proj1 (fb20 eq) )) rg-eq? (r & r₁) (s || s₁) = no (λ ()) rg-eq? (r & r₁) < x > = no (λ ()) rg-eq? (r || r₁) ε = no (λ ()) rg-eq? (r || r₁) φ = no (λ ()) rg-eq? (r || r₁) (s *) = no (λ ()) rg-eq? (r || r₁) (s & s₁) = no (λ ()) rg-eq? (r || r₁) (s || s₁) with rg-eq? r s | rg-eq? r₁ s₁ ... | yes y | yes y₁ = yes ( cong₂ _||_ y y₁) ... | yes y | no n = no (λ eq → n (proj2 (fb21 eq) )) ... | no n | yes y = no (λ eq → n (proj1 (fb21 eq) )) ... | no n | no n₁ = no (λ eq → n (proj1 (fb21 eq) )) rg-eq? (r || r₁) < x > = no (λ ()) rg-eq? < x > ε = no (λ ()) rg-eq? < x > φ = no (λ ()) rg-eq? < x > (s *) = no (λ ()) rg-eq? < x > (s & s₁) = no (λ ()) rg-eq? < x > (s || s₁) = no (λ ()) rg-eq? < x > < x₁ > with eq? x x₁ ... | yes y = yes (cong <_> y) ... | no n = no (λ eq → n (fb11 eq)) where fb11 : < x > ≡ < x₁ > → x ≡ x₁ fb11 refl = refl rank : (r : Regex Σ) → ℕ rank ε = 0 rank φ = 0 rank (r *) = suc (rank r) rank (r & r₁) = suc (max (rank r) (rank r₁)) rank (r || r₁) = max (rank r) (rank r₁) rank < x > = 0 -- -- s is subterm of r -- data SB : (r s : Regex Σ) → Set where sε : SB ε ε sφ : SB φ φ s<> : {s : Σ} → SB < s > < s > sub|1 : {x y z : Regex Σ} → SB x z → SB (x || y) z sub|2 : {x y z : Regex Σ} → SB y z → SB (x || y) z sub* : {x y : Regex Σ} → SB x y → SB (x *) y sub&1 : (x y z : Regex Σ) → SB x z → SB (x & y) z sub&2 : (x y z : Regex Σ) → SB y z → SB (x & y) z sub*& : (x y : Regex Σ) → rank x < rank y → SB y x → SB (y *) (x & (y *)) sub&& : (x y z : Regex Σ) → rank z < rank x → SB (x & y) z → SB (x & y) (z & y) -- -- set of subterm of s -- record ISB (r : Regex Σ) : Set where field s : Regex Σ is-sub : SB r s open import bijection using ( InjectiveF ; Is ) finISB : (r : Regex Σ) → FiniteSet (ISB r) finISB ε = record { finite = 1 ; Q←F = λ _ → record { s = ε ; is-sub = sε } ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where fb00 : (q : ISB ε) → record { s = ε ; is-sub = sε } ≡ q fb00 record { s = .ε ; is-sub = sε } = refl fb01 : (q : ISB ε) → record { s = ε ; is-sub = sε } ≡ q fb01 record { s = .ε ; is-sub = sε } = refl finISB φ = record { finite = 1 ; Q←F = λ _ → record { s = φ ; is-sub = sφ } ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where fb00 : (q : ISB φ) → record { s = φ ; is-sub = sφ } ≡ q fb00 record { s = .φ ; is-sub = sφ } = refl fb01 : (q : ISB φ) → record { s = φ ; is-sub = sφ } ≡ q fb01 record { s = .φ ; is-sub = sφ } = refl finISB < s > = record { finite = 1 ; Q←F = λ _ → record { s = < s > ; is-sub = s<> } ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where fb00 : (q : ISB < s >) → record { s = < s > ; is-sub = s<> } ≡ q fb00 record { s = < s > ; is-sub = s<> } = refl fb01 : (q : ISB < s >) → record { s = < s > ; is-sub = s<> } ≡ q fb01 record { s = < s > ; is-sub = s<> } = refl finISB (x || y) = iso-fin (fin-∨ (finISB x) (finISB y)) record { fun← = fb00 ; fun→ = fb01 ; fiso← = {!!} ; fiso→ = {!!} } where fb00 : ISB (x || y) → ISB x ∨ ISB y fb00 record { s = s ; is-sub = (sub|1 is-sub) } = case1 record { s = s ; is-sub = is-sub } fb00 record { s = s ; is-sub = (sub|2 is-sub) } = case2 record { s = s ; is-sub = is-sub } fb01 : ISB x ∨ ISB y → ISB (x || y) fb01 (case1 record { s = s ; is-sub = is-sub }) = record { s = s ; is-sub = sub|1 is-sub } fb01 (case2 record { s = s ; is-sub = is-sub }) = record { s = s ; is-sub = sub|2 is-sub } fb02 : (x : ISB x ∨ ISB y) → fb00 (fb01 x) ≡ x fb02 (case1 record { s = s ; is-sub = is-sub }) = refl fb02 (case2 record { s = s ; is-sub = is-sub }) = refl finISB (x & y) = iso-fin (fin-∨ (inject-fin (fin-∧ (finISB x) (finISB y)) fi {!!}) (fin-∨1 (fin-∨ (finISB x) (finISB y)))) {!!} where record Z : Set where field x1 y1 z : Regex Σ lt : rank z < suc (max (rank x1) (rank z)) is-sub : SB x1 z fb00 : ISB (x & y) → {!!} fb00 record { s = s ; is-sub = (sub&1 .x .y .s is-sub) } = {!!} fb00 record { s = s ; is-sub = (sub&2 .x .y .s is-sub) } = {!!} fb00 record { s = (z & y) ; is-sub = (sub&& x y z lt is-sub) } = {!!} fi : InjectiveF Z (ISB x ∧ ISB y) fi = record { f = f ; inject = {!!} } where f : Z → ISB x ∧ ISB y f z = ⟪ record { s = Z.x1 z ; is-sub = {!!} } , {!!} ⟫ finISB (x *) = iso-fin (fin-∨ (inject-fin (finISB x) fi {!!} ) (fin-∨1 (finISB x) )) record { fun← = fb00 } where record Z : Set where field z : Regex Σ lt : rank z < rank x is-sub : SB x z fi : InjectiveF Z (ISB x) fi = record { f = f ; inject = {!!} } where f : Z → ISB x f z = record { s = Z.z z ; is-sub = Z.is-sub z } fb00 : ISB (x *) → {!!} fb00 record { s = s ; is-sub = (sub* is-sub) } = {!!} fb00 record { s = (z & (x *)) ; is-sub = (sub*& z x lt is-sub) } = case1 record { z = z ; is-sub = is-sub ; lt = lt } toSB : (r : Regex Σ) → ISB r → Bool toSB r record { s = s ; is-sub = is-sub } with rg-eq? r s ... | yes _ = true ... | no _ = false -- whether one of subset of subterm accepts empty input -- in case of empty set, return true -- sbempty? : (r : Regex Σ) → (ISB r → Bool) → Bool sbempty? ε f with f record { s = ε ; is-sub = sε } ... | true = true ... | false = true sbempty? φ f with f record { s = φ ; is-sub = sφ } ... | true = false ... | false = true sbempty? (r *) f = true sbempty? (r & r₁) f = ? where sb01 : (isb : ISB (r & r₁)) → ( ISB.is-sub isb ≡ sub&1 _ _ _ ? ) ∨ ( ISB.is-sub isb ≡ sub&2 _ _ _ ? ) ∨ ( ISB.is-sub isb ≡ subst (λ k → SB ? ?) ? (sub&& _ _ _ ? ? )) sb01 isb with ISB.is-sub isb | inspect ISB.is-sub isb ... | sub&1 .r .r₁ .(ISB.s isb) t | record { eq = refl } = case1 refl ... | sub&2 .r .r₁ .(ISB.s isb) t | record { eq = refl } = case2 (case1 refl) ... | sub&& .r .r₁ z x t | record { eq = refl } = case2 (case2 refl) sb00 : ISB r → Bool sb00 record { s = s ; is-sub = is-sub } = f record { s = s ; is-sub = sub&1 _ _ _ is-sub } sbempty? (r || r₁) f with f record { s = r ; is-sub = sub|1 ? } | f record { s = r₁ ; is-sub = sub|2 ? } ... | false | t = true ... | true | t = empty? r \/ empty? r₁ sbempty? < x > f with f record { s = < x > ; is-sub = s<> } ... | false = true ... | true = false sbderive : (r : Regex Σ) → (ISB r → Bool) → Σ → ISB r → Bool sbderive ε f s record { s = .ε ; is-sub = sε } = false sbderive φ f s record { s = t ; is-sub = sφ } = false sbderive (r *) f s record { s = t ; is-sub = sub* is-sub } with f record { s = t ; is-sub = sub* is-sub } ... | false = true ... | true with derivative r s ... | ε = true ... | φ = false ... | t₁ * = false ... | t₁ & t₂ = false ... | t₁ || t₂ = false ... | < x > = false sbderive (r *) f s record { s = .(x & (r *)) ; is-sub = sub*& x .r x₁ is-sub } with f record { s = (x & (r *)) ; is-sub = sub*& x r x₁ is-sub } ... | false = true ... | true with derivative r s ... | ε = false ... | φ = false ... | t₁ * = true ... | t₁ & t₂ = true ... | t₁ || t₂ = true ... | < s > = true sbderive (r & r₁) f s record { s = t ; is-sub = sub&1 .r .r₁ .t is-sub } with f record { s = t ; is-sub = sub&1 r r₁ t is-sub } ... | false = true ... | true = false sbderive (r & r₁) f s record { s = t ; is-sub = sub&2 .r .r₁ .t is-sub } with f record { s = t ; is-sub = sub&2 r r₁ t is-sub } ... | false = true ... | true with derivative r s | derivative r₁ s ... | ε | φ = false ... | ε | y = true ... | φ | y = false ... | x1 | φ = false ... | x1 | y1 = false sbderive (r & r₁) f s record { s = .(z & r₁) ; is-sub = (sub&& .r .r₁ z x is-sub) } with f record { s = z & r₁ ; is-sub = sub&& r r₁ z x is-sub } ... | false = true ... | true with derivative r s | derivative r₁ s ... | ε | φ = false ... | ε | y = true ... | φ | y = false ... | x1 | φ = false ... | x1 | y1 = false sbderive (r || r₁) f s₁ record { s = s ; is-sub = (sub|1 is-sub) } = sbderive r sb00 s₁ record { s = s ; is-sub = is-sub } where sb00 : ISB r → Bool sb00 record { s = s ; is-sub = is-sub } = f record { s = s ; is-sub = sub|1 is-sub } sbderive (r || r₁) f s₁ record { s = s ; is-sub = (sub|2 is-sub) } = sbderive r₁ sb00 s₁ record { s = s ; is-sub = is-sub } where sb00 : ISB r₁ → Bool sb00 record { s = s ; is-sub = is-sub } = f record { s = s ; is-sub = sub|2 is-sub } sbderive < x > f s record { s = .(< x >) ; is-sub = s<> } with eq? x s ... | yes _ = false -- because there is no next state ... | no _ = true -- because this term set is empty -- finDerive : (r : Regex Σ) → FiniteSet (Derived r) -- this is not correct because it contains s || s || s || ..... finSBTA : (r : Regex Σ) → FiniteSet (ISB r → Bool) finSBTA r = fin→ ( finISB r ) regex→automaton1 : (r : Regex Σ) → Automaton (ISB r → Bool) Σ regex→automaton1 r = record { δ = sbderive r ; aend = sbempty? r } regex-match1 : (r : Regex Σ) → (List Σ) → Bool regex-match1 r is = accept ( regex→automaton1 r ) (λ sb → toSB r sb) is rg00 : (x : Σ) (y : List Σ) → {r : Regex Σ} → (d : Derivative r) → state d ≡ φ → accept (regex→automaton r) d y ≡ false rg00 x [] d refl = refl rg00 x (z ∷ y) record { state = φ ; is-derived = isd } refl = rg00 z y record { state = φ ; is-derived = derive isd z refl } refl derive-ε : (r : Regex Σ) → (s : Σ) → r ≡ ε → derivative r s ≡ φ derive-ε r s refl = refl rg03-or : (x s : Σ) → {r r₁ : Regex Σ} → (derivative (r || r₁) s ≡ derivative r s ) ∨ (derivative (r || r₁) s ≡ derivative r₁ s ) ∨ (derivative (r || r₁) s ≡ derivative r s || derivative r₁ s ) rg03-or x s {r} {r₁} with derivative r s | derivative r₁ s ... | φ | rr = case2 (case1 refl) ... | ε | φ = case1 refl ... | rr * | φ = case1 refl ... | rr & rr₁ | φ = case1 refl ... | rr || rr₁ | φ = case1 refl ... | < x₁ > | φ = case1 refl ... | ε | ε = case2 (case2 refl) ... | rr * | ε = case2 (case2 refl) ... | rr & rr₁ | ε = case2 (case2 refl) ... | rr || rr₁ | ε = case2 (case2 refl) ... | < x₁ > | ε = case2 (case2 refl) ... | ε | rr₁ * = case2 (case2 refl) ... | rr * | rr₁ * = case2 (case2 refl) ... | rr & rr₂ | rr₁ * = case2 (case2 refl) ... | rr || rr₂ | rr₁ * = case2 (case2 refl) ... | < x₁ > | rr₁ * = case2 (case2 refl) ... | rr | rr₁ & rr₂ = case2 (case2 ?) ... | rr | rr₁ || rr₂ = case2 (case2 ?) ... | rr | < x₁ > = case2 (case2 ?) derive-is-regex-language : (r : Regex Σ) → (x : List Σ )→ regex-language r eq? x ≡ regex-match r x derive-is-regex-language ε [] = refl derive-is-regex-language ε (x ∷ x₁) = sym (rg00 x x₁ record { state = φ ; is-derived = derive (unit refl) _ refl} refl) derive-is-regex-language φ [] = refl derive-is-regex-language φ (x ∷ x₁) = sym (rg00 x x₁ record { state = φ ; is-derived = derive (unit refl) _ refl} refl) derive-is-regex-language (r *) [] with empty? (r *) ... | true = refl ... | false = refl derive-is-regex-language (r *) (h ∷ x) = ? where rg03 : (x s : Σ) → ? rg03 = ? derive-is-regex-language (r & r₁) x = ? derive-is-regex-language (r || r₁) [] = cong₂ (λ j k → j \/ k ) (derive-is-regex-language r []) (derive-is-regex-language r₁ []) derive-is-regex-language (r || r₁) (x ∷ x₁) = ? derive-is-regex-language < x₁ > [] = refl derive-is-regex-language < x₁ > (x ∷ []) with eq? x₁ x ... | yes _ = refl ... | no _ = refl derive-is-regex-language < x₁ > (x ∷ x₂ ∷ x₃) = sym rg02 where rg03 : (x s : Σ) → (derivative < x > s ≡ ε ) ∨ (derivative < x > s ≡ φ ) rg03 x s with eq? x s ... | yes _ = case1 refl ... | no _ = case2 refl rg02 : regex-match < x₁ > (x ∷ x₂ ∷ x₃ ) ≡ false rg02 with rg03 x₁ x ... | case2 eq = rg00 x (x₂ ∷ x₃) record { state = _ ; is-derived = derive (unit refl) _ refl} eq ... | case1 eq = rg00 x₂ x₃ record { state = _ ; is-derived = derive (derive (unit refl) _ refl) _ refl } (derive-ε _ _ eq ) -- immediate with eq? x₁ x generates an error w != eq? a b of type Dec (a ≡ b) derive=ISB : (r : Regex Σ) → (x : List Σ )→ regex-language r eq? x ≡ regex-match1 r x derive=ISB ε [] = refl derive=ISB ε (x ∷ x₁) = ? derive=ISB φ [] = refl derive=ISB φ (x ∷ x₁) = ? derive=ISB (r *) x = ? derive=ISB (r & r₁) x = ? derive=ISB (r || r₁) x = ? derive=ISB < x₁ > [] = ? derive=ISB < x₁ > (x ∷ []) with eq? x₁ x ... | yes _ = refl ... | no _ = refl derive=ISB < x₁ > (x ∷ x₂ ∷ x₃) = ?