{-# OPTIONS --allow-unsolved-metas #-} open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.List hiding ( [_] ) open import Data.Empty open import finiteSet open import finiteSetUtil open import fin module regex2 ( Σ : Set) ( fin : FiniteSet Σ ) ( eq? : (x y : Σ) → Dec (x ≡ y)) where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Fin hiding ( pred ) open import Data.Nat hiding ( _≟_ ) open import Data.List hiding ( any ; [_] ) -- import Data.Bool using ( Bool ; true ; false ; _∧_ ) -- open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ ) open import Relation.Binary.PropositionalEquality as RBF hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import regex open import regular-language open import automaton open import logic open import regular-star open import regular-concat open Automaton open FiniteSet open RegularLanguage regex→RegularLanguage : Regex Σ → RegularLanguage Σ regex→RegularLanguage ε = record { states = One ∨ One ; astart = case1 one ; afin = fin-∨1 finOne ; automaton = record { δ = λ _ _ → case2 one ; aend = rg00 } } where rg00 : One ∨ One → Bool rg00 (case1 one) = true rg00 (case2 one) = false regex→RegularLanguage φ = record { states = One ; astart = one ; afin = finOne ; automaton = record { δ = λ _ _ → one ; aend = λ _ → false } } regex→RegularLanguage (r *) = M-Star ( regex→RegularLanguage r ) regex→RegularLanguage (r & r₁) = M-Concat ( regex→RegularLanguage r ) (regex→RegularLanguage r₁ ) regex→RegularLanguage (r || r₁) = M-Union ( regex→RegularLanguage r ) (regex→RegularLanguage r₁ ) regex→RegularLanguage < x > = record { states = One ∨ One ∨ One ; astart = case1 one ; afin = fin-∨1 (fin-∨1 finOne) ; automaton = record { δ = rg01 ; aend = rg00 } } where rg00 : One ∨ One ∨ One → Bool rg00 (case1 one) = false -- empty case failure rg00 (case2 (case1 one)) = true -- may true on this phase rg00 (case2 (case2 one)) = false -- no success never after rg01 : One ∨ One ∨ One → Σ → One ∨ One ∨ One rg01 (case1 one) s with eq? s x ... | yes _ = case2 (case1 one) ... | no _ = case2 (case2 one) rg01 (case2 (case1 one)) s = case2 (case2 one) rg01 (case2 (case2 one)) s = case2 (case2 one) open Split open _∧_ open import Data.List.Properties regex-concat : {a b : Regex Σ} → (x : List Σ) → regex-language (a & b) eq? x ≡ Concat (regex-language a eq?) (regex-language b eq?) x regex-concat {_} {_} x = refl open import sbconst2 regex-is-regular : (r : Regex Σ ) → ( x : List Σ ) → isRegular (regex-language r eq?) x ( regex→RegularLanguage r ) regex-is-regular r x = rg00 r x where rg00 : (r : Regex Σ) → (x : List Σ) → regex-language r eq? x ≡ accept (automaton (regex→RegularLanguage r)) (astart (regex→RegularLanguage r)) x rg00 ε x = ? rg00 φ x = ? rg00 (r *) x = ? rg00 (r & r₁) x = begin split (regex-language r eq?) (regex-language r₁ eq?) x ≡⟨ cong₂ (λ j k → Concat j k x) (f-extensionality (rg00 r)) (f-extensionality (rg00 r₁)) ⟩ Concat (contain (regex→RegularLanguage r)) (contain (regex→RegularLanguage r₁)) x ≡⟨ closed-in-concat (regex→RegularLanguage r) (regex→RegularLanguage r₁) x ⟩ contain (M-Concat (regex→RegularLanguage r) (regex→RegularLanguage r₁)) x ∎ where open ≡-Reasoning rg00 (r || r₁) x = ? rg00 < s > x = ? -- end