module root2 where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions import gcd as GCD open import even open import nat open import logic record Rational : Set where field i j : ℕ 0 0 coprime : GCD.gcd i j ≡ 1 -- record Dividable (n m : ℕ ) : Set where -- field -- factor : ℕ -- is-factor : factor * n + 0 ≡ m gcd : (i j : ℕ) → ℕ gcd = GCD.gcd gcd-euclid : ( p a b : ℕ ) → 1 < p → 0 < a → 0 < b → ((i : ℕ ) → i < p → 0 < i → gcd p i ≡ 1) → Dividable p (a * b) → Dividable p a ∨ Dividable p b gcd-euclid = GCD.gcd-euclid gcd-div1 : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j ) → Dividable k ( gcd i j ) gcd-div1 = GCD.gcd-div open _∧_ open import prime divdable^2 : ( n k : ℕ ) → 1 < k → 1 < n → Prime k → Dividable k ( n * n ) → Dividable k n divdable^2 zero zero () 1 1 → Prime p → m > 1 → p * n * n ≡ m * m → ¬ (gcd n m ≡ 1) root-prime-irrational n m 0 n>1 pn m>1 pnm = ⊥-elim ( nat-≡< refl (<-trans a1 pn))) root-prime-irrational n m (suc p0) n>1 pn m>1 pnm = rot13 ( gcd-div1 n m (suc p0) 11 pn rot13 : {m : ℕ } → Dividable (suc p0) m → m ≡ 1 → ⊥ rot13 d refl with Dividable.factor d | Dividable.is-factor d ... | zero | () -- gcd 0 m ≡ 1 ... | suc n | x = ⊥-elim ( nat-≡< (sym x) rot17 ) where -- x : (suc n * p + 0) ≡ 1 rot17 : suc n * (suc p0) + 0 > 1 rot17 = begin 2 ≡⟨ refl ⟩ suc (1 * 1 ) ≤⟨ 11 pn record { factor = n * n ; is-factor = begin (n * n) * p + 0 ≡⟨ +-comm _ 0 ⟩ (n * n) * p ≡⟨ *-comm (n * n) p ⟩ p * (n * n) ≡⟨ sym (*-assoc p n n) ⟩ (p * n) * n ≡⟨ pnm ⟩ m * m ∎ } where open ≡-Reasoning -- p * n * n = 2m' 2m' -- n * n = m' 2m' df = Dividable.factor dm dn : Dividable p n dn = divdable^2 n p 11 pn record { factor = df * df ; is-factor = begin df * df * p + 0 ≡⟨ *-cancelʳ-≡ _ _ {p0} ( begin (df * df * p + 0) * p ≡⟨ cong (λ k → k * p) (+-comm (df * df * p) 0) ⟩ ((df * df) * p ) * p ≡⟨ cong (λ k → k * p) (*-assoc df df p ) ⟩ (df * (df * p)) * p ≡⟨ cong (λ k → (df * k ) * p) (*-comm df p) ⟩ (df * (p * df)) * p ≡⟨ sym ( cong (λ k → k * p) (*-assoc df p df ) ) ⟩ ((df * p) * df) * p ≡⟨ *-assoc (df * p) df p ⟩ (df * p) * (df * p) ≡⟨ cong₂ (λ j k → j * k ) (+-comm 0 (df * p)) (+-comm 0 _) ⟩ (df * p + 0) * (df * p + 0) ≡⟨ cong₂ (λ j k → j * k) (Dividable.is-factor dm ) (Dividable.is-factor dm )⟩ m * m ≡⟨ sym pnm ⟩ p * n * n ≡⟨ cong (λ k → k * n) (*-comm p n) ⟩ n * p * n ≡⟨ *-assoc n p n ⟩ n * (p * n) ≡⟨ cong (λ k → n * k) (*-comm p n) ⟩ n * (n * p) ≡⟨ sym (*-assoc n n p) ⟩ n * n * p ∎ ) ⟩ n * n ∎ } where open ≡-Reasoning mkRational : ( i j : ℕ ) → 0 < j → Rational mkRational zero j 00 : gcd (suc i) (suc j) > 0 d>0 = GCD.gcd>0 (suc i) (suc j) (s≤s z≤n) (s≤s z≤n ) id : Dividable d (suc i) id = proj1 (GCD.gcd-dividable (suc i) (suc j)) jd : Dividable d (suc j) jd = proj2 (GCD.gcd-dividable (suc i) (suc j)) 0 0 00 (s≤s z≤n ) jd cop : gcd (Dividable.factor id) (Dividable.factor jd) ≡ 1 cop = GCD.gcd-div-1 {suc i} {suc j} (s≤s z≤n) (s≤s z≤n ) r1 : {x y : ℕ} → x > 0 → y > 0 → x * y > 0 r1 {x} {y} x>0 y>0 = begin 1 * 1 ≤⟨ *≤ {1} {x} {1} x>0 ⟩ x * 1 ≡⟨ *-comm x 1 ⟩ 1 * x ≤⟨ *≤ {1} {y} {x} y>0 ⟩ y * x ≡⟨ *-comm y x ⟩ x * y ∎ where open ≤-Reasoning Rational* : (r s : Rational) → Rational Rational* r s = mkRational (Rational.i r * Rational.i s) (Rational.j r * Rational.j s) (r1 (Rational.0 0 → ( r : Rational ) → Rational* r r r= p → p * Rational.j r * Rational.j r ≡ Rational.i r * Rational.i r r3 p p>0 r rr = r4 where i : ℕ i = Rational.i r * Rational.i r j : ℕ j = Rational.j r * Rational.j r 0 0 → d > 0 r7 00 _ _ 0 0 → d2 > 0 r6 00 ) where open ≡-Reasoning ... | tri> ¬a ¬b c = begin p * Rational.j r * Rational.j r ≡⟨ *-cancel-left (r6 c) ( begin d2 * ((p * Rational.j r) * Rational.j r) ≡⟨ sym (*-assoc d2 _ _) ⟩ (d2 * ( p * Rational.j r )) * Rational.j r ≡⟨ cong (λ k → k * Rational.j r) (sym (*-assoc d2 _ _ )) ⟩ (d2 * p) * Rational.j r * Rational.j r ≡⟨ cong (λ k → k * Rational.j r * Rational.j r) (r8 c) ⟩ d1 * Rational.j r * Rational.j r ≡⟨ *-cancel-left (r7 c) ( begin d * ((d1 * Rational.j r) * Rational.j r) ≡⟨ cong (λ k → d * k ) (*-assoc d1 _ _ )⟩ d * (d1 * (Rational.j r * Rational.j r)) ≡⟨ sym (*-assoc d _ _) ⟩ (d * d1) * (Rational.j r * Rational.j r) ≡⟨ cong (λ k → k * j) (*-comm d _ ) ⟩ (d1 * d) * j ≡⟨ cong (λ k → k * j) (+-comm 0 (d1 * d) ) ⟩ (d1 * d + 0) * j ≡⟨ cong (λ k → k * j ) (Dividable.is-factor (proj1 (GCD.gcd-dividable i j)) ) ⟩ i * j ≡⟨ *-comm i j ⟩ j * i ≡⟨ cong (λ k → k * i ) (sym (Dividable.is-factor (proj2 (GCD.gcd-dividable i j))) ) ⟩ (d2 * GCD.gcd i j + 0) * i ≡⟨ cong (λ k → k * i ) (+-comm (d2 * d ) 0) ⟩ (d2 * d) * i ≡⟨ cong (λ k → k * i ) (*-comm d2 _ ) ⟩ (d * d2) * i ≡⟨ *-assoc d _ _ ⟩ d * (d2 * (Rational.i r * Rational.i r)) ∎ ) ⟩ d2 * (Rational.i r * Rational.i r) ∎ ) ⟩ Rational.i r * Rational.i r ∎ where open ≡-Reasoning root-prime-irrational1 : ( p : ℕ ) → Prime p → ( r : Rational ) → ¬ ( Rational* r r r= p ) root-prime-irrational1 p pr r div with <-cmp (Rational.j r) 1 ... | tri< a ¬b ¬c = ⊥-elim (nat-≤> (Rational.01 pr )) r div r01 : p ≡ i * i r01 = begin p ≡⟨ sym m*1=m ⟩ p * 1 ≡⟨ sym m*1=m ⟩ p * 1 * 1 ≡⟨ cong (λ k → p * k * k ) (sym b) ⟩ p * j * j ≡⟨ r00 ⟩ i * i ∎ where open ≡-Reasoning r03 : p ≡ i * i → i > 1 r03 eq with <-cmp i 1 ... | tri< a ¬b ¬c = {!!} ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b c = c r02 : p ≡ i * i → gcd p i ≡ i r02 eq = GCD.div→gcd (r03 r01) record { factor = i ; is-factor = trans (+-comm _ 0 ) (sym r01) } r04 : 1 ≡ i r04 = begin 1 ≡⟨ sym (Prime.isPrime pr _ {!!} {!!} ) ⟩ gcd p i ≡⟨ r02 r01 ⟩ i ∎ where open ≡-Reasoning ... | tri> ¬a ¬b c with <-cmp (Rational.i r) 1 ... | tri< a ¬b₁ ¬c = ⊥-elim ( nat-≡< (sym r05) r08) where i = Rational.i r j = Rational.j r r00 : p * j * j ≡ i * i r00 = r3 p (<-trans a1 pr )) r div r06 : i ≡ 0 r06 with <-cmp i 0 ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c a ) r05 : p * j * j ≡ 0 r05 = {!!} r08 : p * j * j > 0 r08 = {!!} ... | tri≈ ¬a₁ b ¬c = ⊥-elim ( nat-≡< (sym r07) r09) where i = Rational.i r j = Rational.j r r00 : p * j * j ≡ i * i r00 = r3 p (<-trans a1 pr )) r div r07 : p * j * j ≡ 1 r07 = {!!} r09 : 1 < p * j * j r09 = {!!} ... | tri> ¬a₁ ¬b₁ c₁ = root-prime-irrational (Rational.j r) (Rational.i r) p c pr c₁ (r3 p (<-trans a1 pr ) ) r div) (trans (GCD.gcdsym {Rational.j r} {_} ) (Rational.coprime r) )