module list where postulate A : Set postulate a : A postulate b : A postulate c : A infixr 40 _::_ data List (A : Set ) : Set where [] : List A _::_ : A → List A → List A infixl 30 _++_ _++_ : {A : Set } → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) l1 = a :: [] l2 = a :: b :: a :: c :: [] l3 = l1 ++ l2 data Node ( A : Set ) : Set where leaf : A → Node A node : Node A → Node A → Node A flatten : { A : Set } → Node A → List A flatten ( leaf a ) = a :: [] flatten ( node a b ) = flatten a ++ flatten b n1 = node ( leaf a ) ( node ( leaf b ) ( leaf c )) open import Relation.Binary.PropositionalEquality ++-assoc : (L : Set ) ( xs ys zs : List L ) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assoc A [] ys zs = let open ≡-Reasoning in begin -- to prove ([] ++ ys) ++ zs ≡ [] ++ (ys ++ zs) ( [] ++ ys ) ++ zs ≡⟨ refl ⟩ ys ++ zs ≡⟨⟩ [] ++ ( ys ++ zs ) ∎ ++-assoc A (x :: xs) ys zs = let open ≡-Reasoning in begin -- to prove ((x :: xs) ++ ys) ++ zs == (x :: xs) ++ (ys ++ zs) ((x :: xs) ++ ys) ++ zs ≡⟨ refl ⟩ (x :: (xs ++ ys)) ++ zs ≡⟨ refl ⟩ x :: ((xs ++ ys) ++ zs) ≡⟨ cong (_::_ x) (++-assoc A xs ys zs) ⟩ x :: (xs ++ (ys ++ zs)) ≡⟨ refl ⟩ (x :: xs) ++ (ys ++ zs) ∎ open import Data.Nat length : {L : Set} → List L → ℕ length [] = zero length (_ :: T ) = suc ( length T ) lemma : {L : Set} → (x y : List L ) → ( length x + length y ) ≡ length ( x ++ y ) lemma [] [] = refl lemma [] (_ :: _) = refl lemma (H :: T) L = let open ≡-Reasoning in begin ? ≡⟨ ? ⟩ ? ∎