{-# OPTIONS --allow-unsolved-metas #-} module regex1 where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Fin open import Data.Nat hiding ( _≟_ ) open import Data.List hiding ( any ; [_] ) import Data.Bool using ( Bool ; true ; false ; _∧_ ) open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ ) open import Relation.Binary.PropositionalEquality as RBF hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) data Regex ( Σ : Set ) : Set where _* : Regex Σ → Regex Σ _&_ : Regex Σ → Regex Σ → Regex Σ _||_ : Regex Σ → Regex Σ → Regex Σ <_> : Σ → Regex Σ -- postulate a b c d : Set data hoge : Set where a : hoge b : hoge c : hoge d : hoge infixr 40 _&_ _||_ r1' = (< a > & < b >) & < c > r1 = < a > & < b > & < c > any = < a > || < b > || < c > r2 = ( any * ) & ( < a > & < b > & < c > ) r3 = ( any * ) & ( < a > & < b > & < c > & < a > & < b > & < c > ) r4 = ( < a > & < b > & < c > ) || ( < b > & < c > & < d > ) r5 = ( any * ) & ( < a > & < b > & < c > || < b > & < c > & < d > ) open import nfa split : {Σ : Set} → (List Σ → Bool) → ( List Σ → Bool) → List Σ → Bool split x y [] = x [] ∧ y [] split x y (h ∷ t) = (x [] ∧ y (h ∷ t)) ∨ split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t {-# TERMINATING #-} repeat : {Σ : Set} → (List Σ → Bool) → List Σ → Bool repeat x [] = true repeat {Σ} x ( h ∷ t ) = split x (repeat {Σ} x) ( h ∷ t ) open import finiteSet open FiniteSet cmpi : {Σ : Set} → {n : ℕ } (fin : FiniteSet Σ {n}) → (x y : Σ ) → Dec (F←Q fin x ≡ F←Q fin y) cmpi fin x y = F←Q fin x ≟ F←Q fin y regular-language : {Σ : Set} → Regex Σ → {n : ℕ } (fin : FiniteSet Σ {n}) → List Σ → Bool regular-language (x *) f = repeat ( regular-language x f ) regular-language (x & y) f = split ( regular-language x f ) ( regular-language y f ) regular-language (x || y) f = λ s → ( regular-language x f s ) ∨ ( regular-language y f s) regular-language < h > f [] = false regular-language < h > f (h1 ∷ [] ) with cmpi f h h1 ... | yes _ = true ... | no _ = false regular-language < h > f _ = false