# HG changeset patch # User Shinji KONO # Date 1640772508 -32400 # Node ID 248711134141bc7e65352456d96ae2f8dfcd14ac # Parent 8992ecc40eb171606596f0aa83c39b00155d85ba ... diff -r 8992ecc40eb1 -r 248711134141 automaton-in-agda/src/fin.agda --- a/automaton-in-agda/src/fin.agda Wed Dec 29 11:50:34 2021 +0900 +++ b/automaton-in-agda/src/fin.agda Wed Dec 29 19:08:28 2021 +0900 @@ -173,9 +173,11 @@ fin-dup-in-list>n {zero} (() ∷ qs) lt fin-dup-in-list>n {suc n} qs lt = fdup-phase0 where open import Level using ( Level ) + -- make a dup from one level below fdup+1 : (qs : List (Fin (suc n))) (i : Fin n) → fin-dup-in-list (fromℕ< a ¬a₁ ¬b c = f1-phase2 qs p (case2 q1) + -- two fcmp is only different in the size of Fin, but to develop both f1-phase and list-less both fcmps are required f1-phase2 (x ∷ qs) p (case1 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a suc n → fin-dup-in-list (fromℕ< a n1 → fin-phase2 (fromℕ< a a (subst (λ k → toℕ x < suc k ) (sym fin ¬a ¬b c = s≤s ( fl-phase1 n1 qs lt p ) + -- if the list without the max element is only one length shorter, we can recurse fdup : FDup-in-list n (list-less qs) fdup = fin-dup-in-list>n (list-less qs) (fless qs lt ne) diff -r 8992ecc40eb1 -r 248711134141 automaton-in-agda/src/finiteSetUtil.agda --- a/automaton-in-agda/src/finiteSetUtil.agda Wed Dec 29 11:50:34 2021 +0900 +++ b/automaton-in-agda/src/finiteSetUtil.agda Wed Dec 29 19:08:28 2021 +0900 @@ -515,20 +515,22 @@ dup-in-list+fin {Q} finq q qs p = i-phase1 qs p where i-phase2 : (qs : List Q) → fin-phase2 (F←Q finq q) (map (F←Q finq) qs) ≡ true → phase2 finq q qs ≡ true - i-phase2 (x ∷ qs) p with equal? finq q x | <-fcmp (F←Q finq q) (F←Q finq x) - ... | true | t = refl - ... | false | tri< a ¬b ¬c = i-phase2 qs p - ... | false | tri≈ ¬a b ¬c = {!!} - ... | false | tri> ¬a ¬b c = i-phase2 qs p + i-phase2 (x ∷ qs) p with equal? finq q x | inspect (equal? finq q ) x | <-fcmp (F←Q finq q) (F←Q finq x) + ... | true | _ | t = refl + ... | false | _ | tri< a ¬b ¬c = i-phase2 qs p + ... | false | record { eq = eq } | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq + (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq ))) + ... | false | _ | tri> ¬a ¬b c = i-phase2 qs p i-phase1 : (qs : List Q) → fin-phase1 (F←Q finq q) (map (F←Q finq) qs) ≡ true → phase1 finq q qs ≡ true - i-phase1 (x ∷ qs) p with equal? finq q x | <-fcmp (F←Q finq q) (F←Q finq x) - ... | true | tri< a ¬b ¬c = i-phase2 qs {!!} - ... | true | tri≈ ¬a b ¬c = i-phase2 qs p - ... | true | tri> ¬a ¬b c = i-phase2 qs {!!} - ... | false | tri< a ¬b ¬c = i-phase1 qs p - ... | false | tri≈ ¬a b ¬c = {!!} - ... | false | tri> ¬a ¬b c = i-phase1 qs p + i-phase1 (x ∷ qs) p with equal? finq q x | inspect (equal? finq q ) x | <-fcmp (F←Q finq q) (F←Q finq x) + ... | true | record { eq = eq } | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) ( equal→refl finq eq )) a ) + ... | true | _ | tri≈ ¬a b ¬c = i-phase2 qs p + ... | true | record { eq = eq} | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) (sym ( equal→refl finq eq ))) c ) + ... | false | _ | tri< a ¬b ¬c = i-phase1 qs p + ... | false | record {eq = eq} | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq + (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq ))) + ... | false | _ | tri> ¬a ¬b c = i-phase1 qs p record Dup-in-list {Q : Set } (finq : FiniteSet Q) (qs : List Q) : Set where field @@ -538,8 +540,11 @@ dup-in-list>n : {Q : Set } → (finq : FiniteSet Q) → (qs : List Q) → (len> : length qs > finite finq ) → Dup-in-list finq qs dup-in-list>n {Q} finq qs lt = record { dup = Q←F finq (FDup-in-list.dup dl) ; is-dup = dup-in-list+fin finq (Q←F finq (FDup-in-list.dup dl)) qs dl01 } where + maplen : (qs : List Q) → length (map (F←Q finq) qs) ≡ length qs + maplen [] = refl + maplen (x ∷ qs) = cong suc (maplen qs) dl : FDup-in-list (finite finq ) (map (F←Q finq) qs) - dl = fin-dup-in-list>n (map (F←Q finq) qs) {!!} + dl = fin-dup-in-list>n (map (F←Q finq) qs) (subst (λ k → k > finite finq ) (sym (maplen qs)) lt) dl01 : fin-dup-in-list (F←Q finq (Q←F finq (FDup-in-list.dup dl))) (map (F←Q finq) qs) ≡ true dl01 = subst (λ k → fin-dup-in-list k (map (F←Q finq) qs) ≡ true ) - {!!} ( FDup-in-list.is-dup dl ) + (sym (finiso← finq _)) ( FDup-in-list.is-dup dl ) diff -r 8992ecc40eb1 -r 248711134141 automaton-in-agda/src/non-regular.agda --- a/automaton-in-agda/src/non-regular.agda Wed Dec 29 11:50:34 2021 +0900 +++ b/automaton-in-agda/src/non-regular.agda Wed Dec 29 19:08:28 2021 +0900 @@ -59,6 +59,13 @@ tnext : {q : Q} → {i : Σ} { is : List Σ} {qs : List Q} → Trace fa is (δ fa q i ∷ qs) → Trace fa (i ∷ is) ( q ∷ δ fa q i ∷ qs ) +tr-len : { Q : Set } { Σ : Set } + → (fa : Automaton Q Σ ) + → (is : List Σ) → (q : Q) → (qs : List Q) → Trace fa is (q ∷ qs) → ( length is ≡ length qs ) ∧ (suc (length is) ≡ length (trace fa q is ) ) +tr-len {Q} {Σ} fa .[] q .[] (tend x) = ⟪ refl , refl ⟫ +tr-len {Q} {Σ} fa (i ∷ is) q (q0 ∷ qs) (tnext t) = + ⟪ cong suc (proj1 (tr-len {Q} {Σ} fa is q0 qs t)) , cong suc (proj2 (tr-len {Q} {Σ} fa is q0 qs t)) ⟫ + tr-accept→ : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → (qs : List Q) → Trace fa is (q ∷ qs) → accept fa q is ≡ true @@ -72,12 +79,31 @@ tr-accept← {Q} {Σ} fa (x ∷ []) q ac = tnext (tend ac ) tr-accept← {Q} {Σ} fa (x ∷ x1 ∷ is) q ac = tnext (tr-accept← fa (x1 ∷ is) (δ fa q x) ac) +open Data.Maybe + +-- head : {a : Set} → List a → Maybe a +-- head [] = nothing +-- head (h ∷ _ ) = just h + +tr-append1 : { Q : Set } { Σ : Set } + → (fa : Automaton Q Σ ) + → (i : Σ) → ( q : Q) → (q0 : Q) + → (is : List Σ) + → head (trace fa q is) ≡ just ( δ fa q0 i ) + → (tr : Trace fa is (trace fa q is) ) → Trace fa (i ∷ is) (q0 ∷ (trace fa q is)) +tr-append1 fa i q q0 is hd tr with trace fa q is +tr-append1 fa i q q0 is () tr | [] +... | q₁ ∷ qs = tr01 hd where + tr01 : just q₁ ≡ just (δ fa q0 i) → Trace fa (i ∷ is) (q0 ∷ q₁ ∷ qs) + tr01 refl = tnext tr + open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) record TA { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) {is : List Σ} { qs : List Q } (tr : Trace fa is qs) : Set where field x y z : List Σ qx qy qz : List Q + non-nil-y : ¬ y ≡ [] trace0 : Trace fa (x ++ y ++ z) (qx ++ qy ++ qz) trace1 : Trace fa (x ++ y ++ y ++ z) (qx ++ qy ++ qy ++ qz) trace-eq : trace0 ≅ tr @@ -86,6 +112,7 @@ → dup-in-list finq q qs ≡ true → (tr : Trace fa is qs ) → TA fa tr tr-append {Q} {Σ} fa finq q is qs dup tr = tra-phase1 qs is tr dup where + open TA tra-phase3 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → {!!} → (qy : List Q) → (iy : List Σ) → (ty : Trace fa iy qy ) → phase2 finq q qy ≡ true → {!!} → Trace fa (iy ++ is) (qy ++ qs) @@ -101,15 +128,23 @@ tr1 = tra-phase2 (q₁ ∷ qs) is tr p qy iy ty py tra-phase1 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → phase1 finq q qs ≡ true → TA fa tr tra-phase1 (q0 ∷ []) is (tend x₁) p = {!!} - tra-phase1 (q0 ∷ (q₁ ∷ qs)) (x ∷ is) (tnext tr) p with equal? finq q q0 - ... | true = {!!} where + tra-phase1 (q0 ∷ (q₁ ∷ qs)) (i ∷ is) (tnext tr) p with equal? finq q q0 + ... | true = record { x = i ∷ x tr2 ; y = y tr2 ; z = z tr2 + ; qx = q0 ∷ qx tr2 ; qy = qy tr2 ;qz = qz tr2 + ; trace0 = {!!} + ; trace1 = {!!} + ; non-nil-y = non-nil-y tr2 ; trace-eq = {!!} } where tr2 : TA fa tr tr2 = tra-phase2 (q₁ ∷ qs) is tr p (q₁ ∷ qs) is tr p + -- tr3 : Trace fa (x tr2 ++ y tr2 ++ z tr2) (qx tr2 ++ qy tr2 ++ qz tr2) → Trace fa ((i ∷ x tr2) ++ y tr2 ++ z tr2) (q0 ∷ qx tr2 ++ qy tr2 ++ qz tr2) + -- tr3 tr = tnext {!!} ... | false = {!!} where tr1 : TA fa tr tr1 = tra-phase1 (q₁ ∷ qs) is tr p open RegularLanguage +open import Data.Nat.Properties +open import nat lemmaNN : (r : RegularLanguage In2 ) → ¬ ( (s : List In2) → isRegular inputnn1 s r ) lemmaNN r Rg = {!!} where @@ -117,14 +152,85 @@ n = suc (finite (afin r)) nn = inputnn0 n i0 i1 [] nn01 : (i : ℕ) → inputnn1 ( inputnn0 i i0 i1 [] ) ≡ true - nn01 = {!!} + nn01 zero = refl + nn01 (suc i) with nn01 i + ... | t = {!!} nn03 : accept (automaton r) (astart r) nn ≡ true - nn03 = {!!} + nn03 = subst (λ k → k ≡ true ) (Rg nn ) (nn01 n) + count : In2 → List In2 → ℕ + count _ [] = 0 + count i0 (i0 ∷ s) = suc (count i0 s) + count i1 (i1 ∷ s) = suc (count i1 s) + count x (_ ∷ s) = count x s + nn10 : (s : List In2) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s + nn10 = {!!} + nn11 : {x : In2} → (s t : List In2) → count x (s ++ t) ≡ count x s + count x t + nn11 = {!!} nntrace = trace (automaton r) (astart r) nn nn04 : Trace (automaton r) nn nntrace nn04 = tr-accept← (automaton r) nn (astart r) nn03 + nn07 : (n : ℕ) → length (inputnn0 n i0 i1 []) ≡ n + n + nn07 n = subst (λ k → length (inputnn0 n i0 i1 []) ≡ k) (+-comm (n + n) _ ) (nn08 n [] )where + nn08 : (n : ℕ) → (s : List In2) → length (inputnn0 n i0 i1 s) ≡ n + n + length s + nn08 zero s = refl + nn08 (suc n) s = begin + length (inputnn0 (suc n) i0 i1 s) ≡⟨ refl ⟩ + suc (length (inputnn0 n i0 i1 (i1 ∷ s))) ≡⟨ cong suc (nn08 n (i1 ∷ s)) ⟩ + suc (n + n + suc (length s)) ≡⟨ +-assoc (suc n) n _ ⟩ + suc n + (n + suc (length s)) ≡⟨ cong (λ k → suc n + k) (sym (+-assoc n _ _)) ⟩ + suc n + ((n + 1) + length s) ≡⟨ cong (λ k → suc n + (k + length s)) (+-comm n _) ⟩ + suc n + (suc n + length s) ≡⟨ sym (+-assoc (suc n) _ _) ⟩ + suc n + suc n + length s ∎ where open ≡-Reasoning + nn09 : (n m : ℕ) → n ≤ n + m + nn09 zero m = z≤n + nn09 (suc n) m = s≤s (nn09 n m) + nn05 : length nntrace > finite (afin r) + nn05 = begin + suc (finite (afin r)) ≤⟨ nn09 _ _ ⟩ + n + n ≡⟨ sym (nn07 n) ⟩ + length (inputnn0 n i0 i1 []) ≤⟨ refl-≤s ⟩ + suc (length (inputnn0 (suc (finite (afin r))) i0 i1 [])) ≡⟨ proj2 (tr-len (automaton r) (inputnn0 n i0 i1 []) (astart r) + (trace (automaton r) (δ (automaton r) (astart r) i0) (inputnn0 (finite (afin r)) i0 i1 (i1 ∷ []))) + (tr-accept← (automaton r) _ _ nn03 )) ⟩ + length nntrace ∎ where open ≤-Reasoning nn02 : TA (automaton r) nn04 - nn02 = tr-append (automaton r) (afin r) (Dup-in-list.dup nn05) _ _ (Dup-in-list.is-dup nn05) nn04 where - nn05 : Dup-in-list ( afin r) nntrace - nn05 = dup-in-list>n (afin r) nntrace {!!} - + nn02 = tr-append (automaton r) (afin r) (Dup-in-list.dup nn06) _ _ (Dup-in-list.is-dup nn06) nn04 where + nn06 : Dup-in-list ( afin r) nntrace + nn06 = dup-in-list>n (afin r) nntrace nn05 + nn12 : (x y z : List In2) + → ¬ y ≡ [] + → accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true) + nn12 x y z p q = {!!} where + mono-color : List In2 → Bool + mono-color [] = true + mono-color (i0 ∷ s) = mono-color0 s where + mono-color0 : List In2 → Bool + mono-color0 [] = true + mono-color0 (i1 ∷ s) = false + mono-color0 (i0 ∷ s) = mono-color0 s + mono-color (i1 ∷ s) = mono-color1 s where + mono-color1 : List In2 → Bool + mono-color1 [] = true + mono-color1 (i0 ∷ s) = false + mono-color1 (i1 ∷ s) = mono-color1 s + mono-color (i1 ∷ s) = {!!} + i1-i0? : List In2 → Bool + i1-i0? [] = false + i1-i0? (i1 ∷ []) = false + i1-i0? (i0 ∷ []) = false + i1-i0? (i1 ∷ i0 ∷ s) = true + i1-i0? (_ ∷ s0 ∷ s1) = i1-i0? (s0 ∷ s1) + nn13 : mono-color y ≡ true → count i0 (x ++ y ++ z) ≡ count i1 (x ++ y ++ z) → + ¬ ( count i0 (x ++ y ++ y ++ z) ≡ count i1 (x ++ y ++ y ++ z) ) + nn13 = {!!} + nn16 : (s : List In2 ) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s + nn16 = {!!} + nn15 : (s : List In2 ) → i1-i0? s ≡ true → accept (automaton r) (astart r) s ≡ false + nn15 = {!!} + nn14 : mono-color y ≡ false → i1-i0? (x ++ y ++ y ++ z) ≡ true + nn14 = {!!} + nn17 : accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true) + nn17 p q with mono-color y | inspect mono-color y + ... | true | record { eq = eq } = {!!} + ... | false | record { eq = eq } = {!!} -- q ( nn15 (x ++ y ++ z) (nn14 eq)) +