# HG changeset patch # User Shinji KONO # Date 1624009884 -32400 # Node ID f1ee71c7c93a6f740049dbb33249755aef899548 # Parent 008309a9da919eae600d149547407e8f92a071fc another method on fact< diff -r 008309a9da91 -r f1ee71c7c93a automaton-in-agda/src/prime.agda --- a/automaton-in-agda/src/prime.agda Fri Jun 18 17:55:41 2021 +0900 +++ b/automaton-in-agda/src/prime.agda Fri Jun 18 18:51:24 2021 +0900 @@ -85,44 +85,17 @@ suc (1 + m * factorial m) ≤⟨ s≤s (+-monoˡ-≤ _ (factorial≥1 {m})) ⟩ suc (factorial m + m * factorial m) ≡⟨ refl ⟩ suc (factorial (suc m)) ∎ where open ≤-Reasoning - fact< : (n : ℕ) → 0 < n → n < suc (suc m) → Dividable n ( factorial (suc m) ) - fact< n 0 ¬a ¬b c = ⊥-elim ( nat-≤> (s≤s c) n ¬a ¬b c = ⊥-elim ( nat-≤> (s≤s c) n ¬a ¬b c = {!!} fact : (n : ℕ) → Prime n → Dividable n ( factorial (suc m) ) - fact n p = fact< n (<-trans (s≤s z≤n) (Prime.p>0 p)) ( prime0 p)) ( prime 1 → Dividable k i → ¬ Dividable k (suc i) getPrime : ⊥ getPrime with PrimeP ( suc (factorial (suc m)) )