# HG changeset patch # User Shinji KONO # Date 1615595910 -32400 # Node ID fc770d1661d42ab86c9d7db5cc658e9503dbee90 # Parent 159ad8b0104e9338d49b72221e4743bbafbce31e ... diff -r 159ad8b0104e -r fc770d1661d4 agda/gcd.agda --- a/agda/gcd.agda Sat Mar 13 00:23:23 2021 +0900 +++ b/agda/gcd.agda Sat Mar 13 09:38:30 2021 +0900 @@ -200,3 +200,18 @@ gcd4 : ( n k : ℕ ) → 1 < n → gcd n k ≡ k → k ≤ n gcd4 n k 1m record { isPrime = λ n lt → fact n lt } where factorial : (n : ℕ) → ℕ factorial zero = 1 factorial (suc n) = (suc n) * (factorial n) - -- gcdmul+1 : gcd (m * n + 1) n ≡ 1 - np : (i n j : ℕ) → ((i : ℕ) → Prime i → gcd i n ≡ 1) → Prime j → gcd (i * j ) n ≡ 1 - np = {!!} - pf : (j : ℕ) → j < suc (factorial (suc m)) → gcd (suc (factorial (suc m))) j ≡ 1 - pf j jm : suc m < suc (factorial (suc m)) + f>m = {!!} + factm : (n m : ℕ ) → n < (suc (factorial m)) → Dividable n (factorial m ) + factm = {!!} + fact : (n : ℕ ) → n < (suc (factorial (suc m))) → gcd (suc (factorial (suc m))) n ≡ 1 + fact n lt = begin + gcd (suc (factorial (suc m))) n ≡⟨ cong (λ k → gcd k n) (Dividable.is-factor d ) ⟩ + gcd ( (Dividable.factor d * n + 0) + 1) n ≡⟨ {!!} ⟩ + gcd ( Dividable.factor d * n + 1) n ≡⟨ gcdmul+1 (Dividable.factor d) n ⟩ + 1 ∎ where + d : Dividable n (factorial (suc m )) + d = factm n (suc m) lt