Mercurial > hg > Members > kono > Proof > automaton
changeset 131:06a42928de38
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Nov 2019 11:05:32 +0900 |
parents | 08990387c919 |
children | 370b3fc69c1a |
files | agda/finiteSet.agda |
diffstat | 1 files changed, 12 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/finiteSet.agda Sun Nov 24 10:08:14 2019 +0900 +++ b/agda/finiteSet.agda Sun Nov 24 11:05:32 2019 +0900 @@ -416,8 +416,18 @@ ISO.iso← iso (case2 x) | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (elm<n x) ) ISO.iso← iso (case2 x) | tri> ¬a ¬b c = ⊥-elim ( nat-<> c (elm<n x) ) ISO.iso→ iso x with ISO.A←B iso x - ISO.iso→ iso x | case1 one = ? - ISO.iso→ iso x | case2 x1 = {!!} + ISO.iso→ iso x | case1 one with Data.Nat.Properties.<-cmp (toℕ (FiniteSet.F←Q fa (elm x )) ) n + ISO.iso→ iso x | case1 one | tri< a ¬b ¬c = ⊥-elim ( ¬c lemma3 ) where + lemma2 : n < toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)))) + lemma2 = subst (λ k → n < toℕ k ) (sym (FiniteSet.finiso← fa _ )) {!!} + lemma3 : n < toℕ (FiniteSet.F←Q fa (elm x)) + lemma3 = subst (λ k → n < toℕ k ) {!!} lemma2 + ISO.iso→ iso x | case1 one | tri≈ ¬a b ¬c = {!!} + ISO.iso→ iso x | case1 one | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c (elm<n x) ) + ISO.iso→ iso x | case2 x1 = {!!} -- with Data.Nat.Properties.<-cmp (toℕ (FiniteSet.F←Q fa (elm x )) ) n + -- ISO.iso→ iso x | case2 x1 | tri< a ¬b ¬c = ? + -- ISO.iso→ iso x | case2 x1 | tri≈ ¬a b ¬c = {!!} + -- ISO.iso→ iso x | case2 x1 | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c (elm<n x) ) fin-× : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A × B) {a * b} fin-× {A} {B} {a} {b} fa fb with FiniteSet→Fin fa