Mercurial > hg > Members > kono > Proof > automaton
changeset 186:08f4ec41ea93
even→gcd
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 14 Jun 2021 02:17:58 +0900 |
parents | f9473f83f6e7 |
children | 1402c5b17160 |
files | automaton-in-agda/src/gcd.agda automaton-in-agda/src/root2.agda |
diffstat | 2 files changed, 30 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/gcd.agda Mon Jun 14 00:25:04 2021 +0900 +++ b/automaton-in-agda/src/gcd.agda Mon Jun 14 02:17:58 2021 +0900 @@ -65,7 +65,7 @@ gcd : ( i j : ℕ ) → ℕ gcd i j = gcd1 i i j j -gcd-gt : ( i i0 j j0 k : ℕ ) → (if : Factor k i) (i0f : Factor k i0 ) (jf : Factor k i ) (j0f : Factor k j0) +gcd-gt : ( i i0 j j0 k : ℕ ) → (if : Factor k i) (i0f : Factor k i0 ) (jf : Factor k j ) (j0f : Factor k j0) → remain i0f ≡ 0 → remain j0f ≡ 0 → (remain if + i ) ≡ i0 → (remain jf + j ) ≡ j0 → Dividable k ( gcd1 i i0 j j0 ) @@ -76,17 +76,28 @@ gcd-gt zero i0 (suc zero) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen gcd-gt zero zero (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = record { factor = factor j0f ; is-factor = ifk0 j0 k j0f j0=0 } gcd-gt zero (suc i0) (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = - gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k (decf i0f) i0f (decf i0f) + gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k (decf i0f) {!!} {!!} record { factor = factor jf ; remain = remain jf ; is-factor = {!!} } i0=0 {!!} {!!} {!!} gcd-gt (suc zero) i0 zero j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen gcd-gt (suc (suc i)) i0 zero zero k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} gcd-gt (suc (suc i)) i0 zero (suc j0) k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = - gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k (decf if) {!!} (decf jf) j0f j0=0 {!!} {!!} {!!} + gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k (decf if) {!!} (decf {!!}) j0f j0=0 {!!} {!!} {!!} gcd-gt (suc zero) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = gcd-gt zero i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!} gcd-gt (suc (suc i)) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = gcd-gt (suc i) i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!} +gcd-div : ( i j k : ℕ ) → (if : Factor k i) (jf : Factor k j ) + → remain if ≡ 0 → remain jf ≡ 0 + → Dividable k ( gcd i j ) +gcd-div i j k if jf i0=0 j0=0 = gcd-gt i i j j k if if jf jf i0=0 j0=0 (gf4 i0=0) (gf4 j0=0) where + gf4 : {m n : ℕ} → n ≡ 0 → n + m ≡ m + gf4 {m} {n} eq = begin + n + m ≡⟨ cong (λ k → k + m) eq ⟩ + 0 + m ≡⟨ refl ⟩ + m ∎ where open ≡-Reasoning + + -- gcd26 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd (n - m) m -- gcd27 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n k ≡ k → k ≤ n
--- a/automaton-in-agda/src/root2.agda Mon Jun 14 00:25:04 2021 +0900 +++ b/automaton-in-agda/src/root2.agda Mon Jun 14 02:17:58 2021 +0900 @@ -24,6 +24,17 @@ gcd (suc (suc n)) 2 ≡⟨ even→gcd=2 {suc (suc n)} en (s≤s z≤n) ⟩ 2 ∎ where open ≡-Reasoning +even→gcd : (n m : ℕ) → even n → even m → even (gcd n m) +even→gcd zero zero en em = tt +even→gcd zero (suc (suc m)) en em = em +even→gcd (suc (suc n)) zero en em = en +even→gcd (suc (suc n)) (suc (suc m)) en em = ee2 n n (suc (suc m)) (suc (suc m)) refl refl + (subst (λ k → even k) (gcdsym {suc (suc m)} {n}) (ee2 m m n n refl refl (subst (λ k → even k) (gcdsym {n} {m}) ee1))) where + ee1 : even (gcd n m) + ee1 = even→gcd n m en em + ee2 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → even (gcd1 i i j0 j0) → even (gcd1 (suc (suc i)) (suc (suc i)) j0 j0) + ee2 i i0 j j0 i=i0 j=j0 e = {!!} + even^2 : {n : ℕ} → even ( n * n ) → even n even^2 {n} en with even? n ... | yes y = y @@ -52,8 +63,12 @@ open Factor +-- gcd-div : ( i j k : ℕ ) → (if : Factor k i) (jf : Factor k j ) +-- → remain if ≡ 0 → remain jf ≡ 0 +-- → Dividable k ( gcd i j ) + root2-irrational : ( n m : ℕ ) → n > 1 → m > 1 → 2 * n * n ≡ m * m → ¬ (gcd n m ≡ 1) -root2-irrational n m n>1 m>1 2nm = rot13 ( gcd-gt n n m m 2 f2 f2 f2 fm (f3 n rot7) refl f4 f4) where +root2-irrational n m n>1 m>1 2nm = rot13 ( gcd-div n m 2 f2 fm (f3 n rot7) refl ) where rot13 : {m : ℕ } → Dividable 2 m → m ≡ 1 → ⊥ rot13 d refl with Dividable.factor d | Dividable.is-factor d ... | zero | () @@ -99,11 +114,6 @@ f3 : ( n : ℕ) → (e : even n ) → remain (rot11 {n} e) ≡ 0 f3 zero e = refl f3 (suc (suc n)) e = f3 n e - f4 : {m : ℕ} → remain f2 + m ≡ m - f4 {m} = begin - remain f2 + m ≡⟨ cong (λ k → k + m) (f3 n rot7) ⟩ - 0 + m ≡⟨ refl ⟩ - m ∎ where open ≡-Reasoning fm : Factor 2 m fm = record { factor = Even.j E ; remain = 0 ; is-factor = fm1 } where fm1 : Even.j E * 2 + 0 ≡ m