Mercurial > hg > Members > kono > Proof > automaton
changeset 23:0c3054704de7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Sep 2018 20:43:59 +0900 |
parents | 9bc76248d749 |
children | 9406c2571fe7 |
files | agda/omega-automaton.agda |
diffstat | 1 files changed, 17 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/omega-automaton.agda Mon Sep 10 23:45:17 2018 +0900 +++ b/agda/omega-automaton.agda Mon Sep 17 20:43:59 2018 +0900 @@ -28,8 +28,7 @@ record Muller { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) : Set where field next : (n : ℕ ) → ℕ - large : (n : ℕ ) → next n > n - infinite : (n : ℕ ) → aend Ω ( ω-run Ω (next n) S ) ≡ true + infinite : (n : ℕ ) → aend Ω ( ω-run Ω (n + (next n)) S ) ≡ true -- ¬ p -- ------------> @@ -103,37 +102,28 @@ flip-dec2 n () | false flip-dec2 n () | true + +record flipProperty : Set where + field + flipP : (n : ℕ) → ω-run ωa2 (suc (suc n)) flip-seq ≡ ω-run ωa2 n flip-seq + lemma2 : Muller ωa2 flip-seq lemma2 = record { next = next - ; large = large ; infinite = infinite } where next : ℕ → ℕ - next 0 = 1 - next 1 = 3 - next (suc (suc n)) = suc (suc (next n )) - large : (n : ℕ) → next n > n - large 0 = s≤s ( z≤n ) - large 1 = s≤s ( s≤s ( z≤n ) ) - large (suc (suc n)) = s≤s ( s≤s (large n)) - lem2 : (n : ℕ) → ω-run ωa2 (suc (suc n)) flip-seq ≡ ω-run ωa2 n flip-seq - lem2 zero = refl - lem2 (suc n) = {!!} - infinite : (n : ℕ) → aend ωa2 (ω-run ωa2 (next n) flip-seq) ≡ true - infinite 0 = refl - infinite 1 = refl - infinite (suc (suc n)) = let open ≡-Reasoning in - aend ωa2 (ω-run ωa2 (next (suc (suc n))) flip-seq) - ≡⟨⟩ - aend ωa2 (ω-run ωa2 (suc (suc (next n))) flip-seq) - ≡⟨ cong ( λ x -> aend ωa2 x ) (lem2 (next n) ) ⟩ - aend ωa2 (ω-run ωa2 (next n) flip-seq) - ≡⟨ infinite n ⟩ - true - ∎ - - + next n with ω-run ωa2 n flip-seq | flip-seq n + next n | ts | true = 2 + next n | ts | false = 1 + next n | ts* | true = 2 + next n | ts* | false = 1 + infinite : (n : ℕ) → aend ωa2 (ω-run ωa2 (n + (next n)) flip-seq) ≡ true + infinite n with ω-run ωa2 n flip-seq | flip-seq n | + infinite n | ts | true = {!!} + infinite n | ts | false = {!!} + infinite n | ts* | true = {!!} + infinite n | ts* | false = {!!} lemma3 : Buchi ωa1 false-seq → ⊥ lemma3 = {!!}