Mercurial > hg > Members > kono > Proof > automaton
changeset 169:1c43d0713dfc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 13 Mar 2021 15:12:18 +0900 |
parents | c25b7de9cc35 |
children | 6cd9d874cc55 |
files | agda/prime.agda |
diffstat | 1 files changed, 21 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/prime.agda Sat Mar 13 09:50:44 2021 +0900 +++ b/agda/prime.agda Sat Mar 13 15:12:18 2021 +0900 @@ -17,6 +17,20 @@ open ≡-Reasoning +record NonPrime ( n : ℕ ) : Set where + field + factor : ℕ + dividable : Dividable factor n + +nonPrime : ( n : ℕ ) → ¬ Prime n → NonPrime n +nonPrime n np = np1 n (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n ) ) where + np1 : ( m : ℕ ) → ( (j : ℕ ) → m ≤ j → j < n → gcd n j ≡ 1 ) → NonPrime n + np1 zero mg = ⊥-elim ( np record { isPrime = λ j lt → mg j z≤n lt } ) -- zero < j , j < n + np1 (suc m) mg with <-cmp ( gcd n (suc m) ) 1 + ... | tri< a ¬b ¬c = {!!} + ... | tri≈ ¬a b ¬c = np1 m {!!} + ... | tri> ¬a ¬b c = record { factor = gcd n (suc m) ; dividable = record { factor = {!!} ; is-factor = {!!} } } + prime-is-infinite : (max-prime : ℕ ) → ¬ ( (j : ℕ) → max-prime < j → ¬ Prime j ) prime-is-infinite zero pmax = pmax 1 {!!} record { isPrime = λ n lt → {!!} } prime-is-infinite (suc m) pmax = pmax (suc (factorial (suc m))) f>m record { isPrime = λ n lt → fact n lt } where @@ -25,13 +39,17 @@ factorial (suc n) = (suc n) * (factorial n) f>m : suc m < suc (factorial (suc m)) f>m = {!!} - factm : (n m : ℕ ) → n < (suc (factorial m)) → Dividable n (factorial m ) + factm : (n m : ℕ ) → n < (suc m) → Dividable n (factorial m ) factm = {!!} fact : (n : ℕ ) → n < (suc (factorial (suc m))) → gcd (suc (factorial (suc m))) n ≡ 1 fact n lt = begin - gcd (suc (factorial (suc m))) n ≡⟨ cong (λ k → gcd k n) (Dividable.is-factor d ) ⟩ + gcd (suc (factorial (suc m))) n ≡⟨ {!!} ⟩ + -- ? ≡⟨ cong (λ k → gcd k n) (Dividable.is-factor d ) ⟩ gcd ( (Dividable.factor d * n + 0) + 1) n ≡⟨ cong (λ k → gcd ( k + 1 ) n ) (+-comm (Dividable.factor d * n) 0) ⟩ gcd ( Dividable.factor d * n + 1) n ≡⟨ gcdmul+1 (Dividable.factor d) n ⟩ 1 ∎ where d : Dividable n (factorial (suc m )) - d = factm n (suc m) lt + d with <-cmp n (suc m) + ... | tri< a ¬b ¬c = factm n (suc m) {!!} + ... | tri≈ ¬a b ¬c = factm n (suc m) {!!} + ... | tri> ¬a ¬b c = NonPrime.dividable (nonPrime ? ? )