Mercurial > hg > Members > kono > Proof > automaton
changeset 388:227f1f8f9c93
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Jul 2023 03:36:06 +0900 |
parents | 2d3364cc88ad |
children | 5264070ddd2d |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 54 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Thu Jul 27 02:09:27 2023 +0900 +++ b/automaton-in-agda/src/non-regular.agda Thu Jul 27 03:36:06 2023 +0900 @@ -77,6 +77,16 @@ open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality +nn30 : (y : List In2) → (j : ℕ) → proj2 (inputnn1-i0 (suc j) y) ≡ proj2 (inputnn1-i0 j y ) +nn30 [] _ = refl +nn30 (i0 ∷ y) j = nn30 y (suc j) +nn30 (i1 ∷ y) _ = refl + +nn31 : (y : List In2) → (j : ℕ) → proj1 (inputnn1-i0 (suc j) y) ≡ suc (proj1 (inputnn1-i0 j y )) +nn31 [] _ = refl +nn31 (i0 ∷ y) j = nn31 y (suc j) +nn31 (i1 ∷ y) _ = refl + nn01 : (i : ℕ) → inputnn1 ( inputnn0 i ) ≡ true nn01 i = subst₂ (λ j k → inputnn1-i1 j k ≡ true) (sym (nn07 i 0 refl)) (sym (nn09 i)) (nn04 i) where nn07 : (j x : ℕ) → x + j ≡ i → proj1 ( inputnn1-i0 x (input-addi0 j (input-addi1 i))) ≡ x + j @@ -97,11 +107,7 @@ nn08 zero () nn08 (suc i) () ... | i1 ∷ t | _ = refl - nn09 (suc j) = trans (nn10 (input-addi0 j (input-addi1 i)) 0) (nn09 j ) where - nn10 : (y : List In2) → (j : ℕ) → proj2 (inputnn1-i0 (suc j) y) ≡ proj2 (inputnn1-i0 j y ) - nn10 [] _ = refl - nn10 (i0 ∷ y) j = nn10 y (suc j) - nn10 (i1 ∷ y) _ = refl + nn09 (suc j) = trans (nn30 (input-addi0 j (input-addi1 i)) 0) (nn09 j ) nn04 : (i : ℕ) → inputnn1-i1 i (input-addi1 i) ≡ true nn04 zero = refl nn04 (suc i) = nn04 i @@ -184,13 +190,35 @@ suc (count0 t + count1 t) ≡⟨ cong suc ( c0+1=n t ) ⟩ suc (length t) ∎ where open ≡-Reasoning nn15 : (x : List In2 ) → inputnn1 x ≡ true → count0 x ≡ count1 x - nn15 x eq = ? where - nn18 : inputnn1-i1 (proj1 (inputnn1-i0 0 x)) (proj2 (inputnn1-i0 0 x)) ≡ true - nn18 = eq - nn16 : (x : List In2 ) → proj1 (inputnn1-i0 (count0 x) x ) ≡ count0 x - nn16 = ? - nn17 : (x : List In2 ) → count1 (proj2 (inputnn1-i0 (count0 x) x ) ) ≡ count1 x - nn17 = ? + nn15 x eq = nn18 where + nn17 : (x : List In2 ) → (count0 x ≡ proj1 (inputnn1-i0 0 x) + count0 (proj2 (inputnn1-i0 0 x))) + ∧ (count1 x ≡ 0 + count1 (proj2 (inputnn1-i0 0 x))) + nn17 [] = ⟪ refl , refl ⟫ + nn17 (i0 ∷ t ) with nn17 t + ... | ⟪ eq1 , eq2 ⟫ = ⟪ begin + suc (count0 t ) ≡⟨ cong suc eq1 ⟩ + suc (proj1 (inputnn1-i0 0 t) + count0 (proj2 (inputnn1-i0 0 t))) ≡⟨ cong₂ _+_ (sym (nn31 t 0)) (cong count0 (sym (nn30 t 0))) ⟩ + proj1 (inputnn1-i0 1 t) + count0 (proj2 (inputnn1-i0 1 t)) ∎ + , trans eq2 (cong count1 (sym (nn30 t 0))) ⟫ where + open ≡-Reasoning + nn20 : proj2 (inputnn1-i0 1 t) ≡ proj2 (inputnn1-i0 0 t) + nn20 = nn30 t 0 + nn17 (i1 ∷ x₁) = ⟪ refl , refl ⟫ + nn19 : (n : ℕ) → (y : List In2 ) → inputnn1-i1 n y ≡ true → (count0 y ≡ 0) ∧ (count1 y ≡ n) + nn19 zero [] eq = ⟪ refl , refl ⟫ + nn19 zero (i0 ∷ y) () + nn19 zero (i1 ∷ y) () + nn19 (suc i) (i1 ∷ y) eq with nn19 i y eq + ... | t = ⟪ proj1 t , cong suc (proj2 t ) ⟫ + nn18 : count0 x ≡ count1 x + nn18 = begin + count0 x ≡⟨ proj1 (nn17 x) ⟩ + proj1 (inputnn1-i0 0 x) + count0 (proj2 (inputnn1-i0 0 x)) ≡⟨ cong (λ k → proj1 (inputnn1-i0 0 x) + k) + (proj1 (nn19 (proj1 (inputnn1-i0 0 x)) (proj2 (inputnn1-i0 0 x)) eq)) ⟩ + proj1 (inputnn1-i0 0 x) + 0 ≡⟨ +-comm _ 0 ⟩ + 0 + proj1 (inputnn1-i0 0 x) ≡⟨ cong (λ k → 0 + k) (sym (proj2 (nn19 _ _ eq))) ⟩ + 0 + count1 (proj2 (inputnn1-i0 0 x)) ≡⟨ sym (proj2 (nn17 x)) ⟩ + count1 x ∎ where open ≡-Reasoning cong0 : (x y : List In2 ) → count0 (x ++ y ) ≡ count0 x + count0 y cong0 [] y = refl cong0 (i0 ∷ x) y = cong suc (cong0 x y) @@ -203,10 +231,21 @@ field a b : List In2 i10 : z ≡ a ++ (i1 ∷ i0 ∷ b ) - nn12 : (z : List In2 ) → inputnn1 z ≡ true → ¬ i1i0 z - nn12 = ? + nn12 : (x : List In2 ) → inputnn1 x ≡ true → ¬ i1i0 x + nn12 x eq = nn18 x (nn17 x) eq where + nn17 : (x : List In2 ) → ¬ i1i0 (proj2 (inputnn1-i0 0 x)) + nn17 [] li with i1i0.a li | i1i0.i10 li + ... | [] | () + ... | x ∷ s | () + nn17 (i0 ∷ x₁) li = nn17 x₁ (subst (λ k → i1i0 k) (nn30 x₁ 0 ) li ) + nn17 (i1 ∷ x₁) li with i1i0.i10 li + ... | t = ? + nn18 : (x : List In2 ) → ¬ i1i0 (proj2 (inputnn1-i0 0 x)) + → inputnn1-i1 (proj1 (inputnn1-i0 0 x)) (proj2 (inputnn1-i0 0 x)) ≡ true → ¬ i1i0 x + nn18 = ? nn11 : (x y z : List In2 ) → ¬ y ≡ [] → inputnn1 (x ++ y ++ z) ≡ true → ¬ ( inputnn1 (x ++ y ++ y ++ z) ≡ true ) - nn11 x y z ny xyz xyyz = ⊥-elim ( nn12 (x ++ y ++ y ++ z ) xyyz record { a = x ++ i1i0.a (bb23 bb22 ) ; b = i1i0.b (bb23 bb22) ++ z ; i10 = bb24 } ) where + nn11 x y z ny xyz xyyz = ⊥-elim ( nn12 (x ++ y ++ y ++ z ) xyyz record { a = x ++ i1i0.a (bb23 bb22 ) + ; b = i1i0.b (bb23 bb22) ++ z ; i10 = bb24 } ) where nn21 : count0 x + count0 y + count0 y + count0 z ≡ count1 x + count1 y + count1 y + count1 z nn21 = begin (count0 x + count0 y + count0 y) + count0 z ≡⟨ solve +-0-monoid ⟩