Mercurial > hg > Members > kono > Proof > automaton
changeset 135:2d70f90565c6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Nov 2019 15:40:37 +0900 |
parents | 14cf0e1c8d91 |
children | 7c8460329f27 |
files | agda/finiteSet.agda |
diffstat | 1 files changed, 32 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/finiteSet.agda Sun Nov 24 14:52:20 2019 +0900 +++ b/agda/finiteSet.agda Sun Nov 24 15:40:37 2019 +0900 @@ -382,6 +382,38 @@ open import Data.Product +Fin2Finite : ( n : ℕ ) → FiniteSet (Fin n) {n} +Fin2Finite n = record { F←Q = λ x → x ; Q←F = λ x → x ; finiso← = λ q → refl ; finiso→ = λ q → refl } + +data f-1 { n m : ℕ } { A : Set } (n<m : n < m ) (fa : FiniteSet A {m}) : Set where + elm1 : (elm : A ) → toℕ (FiniteSet.F←Q fa elm ) < n → f-1 n<m fa + +-- f-1-cong : { n m : ℕ } (n<m : n < m ) { A : Set } (fa : FiniteSet A {m}) +-- → ( elm s ≡ elm t) → ( elm<n s ≅ elm<n t ) → elm1 e0 e0<n ≡ elm1 e1 e1<n +-- f-1-<-cong n<m fa _ _ refl HE.refl = refl + +fin-<' : {A : Set} → { n m : ℕ } → (n<m : n < m ) → (fa : FiniteSet A {m}) → FiniteSet (f-1 n<m fa) {n} +fin-<' {A} {n} {m} n<m fa = iso-fin (Fin2Finite n) iso where + iso : ISO (Fin n) (f-1 n<m fa) + ISO.A←B iso (elm1 elm x) = fromℕ≤ x + ISO.B←A iso x = elm1 (FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans x<n n<m ))) to<n where + x<n : toℕ x < n + x<n = toℕ<n x + to<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans x<n n<m)))) < n + to<n = subst (λ k → toℕ k < n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k < n ) (sym ( toℕ-fromℕ≤ (Data.Nat.Properties.<-trans x<n n<m) )) x<n ) + ISO.iso← iso x = lemma2 where + lemma2 : fromℕ≤ (subst (λ k → toℕ k < n) (sym + (FiniteSet.finiso← fa (fromℕ≤ (Data.Nat.Properties.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) + (sym (toℕ-fromℕ≤ (Data.Nat.Properties.<-trans (toℕ<n x) n<m))) (toℕ<n x))) ≡ x + lemma2 = {!!} + ISO.iso→ iso (elm1 elm x) = lemma1 where + lemma : FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans (toℕ<n (ISO.A←B iso (elm1 elm x))) n<m)) ≡ elm + lemma = {!!} + lemma1 : ISO.B←A iso (ISO.A←B iso (elm1 elm x)) ≡ elm1 elm x + lemma1 with lemma + ... | eq = {!!} + + record Fin-< { n m : ℕ } (n<m : n < m ) { A : Set } (fa : FiniteSet A {m}) : Set where field elm : A