Mercurial > hg > Members > kono > Proof > automaton
changeset 325:39f0e1d7a7e5
root2 fulcomp
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 15 Jan 2022 01:12:43 +0900 |
parents | 329adb1b71c7 |
children | a3fb231feeb9 |
files | automaton-in-agda/src/root2.agda |
diffstat | 1 files changed, 81 insertions(+), 32 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/root2.agda Fri Jan 14 22:58:25 2022 +0900 +++ b/automaton-in-agda/src/root2.agda Sat Jan 15 01:12:43 2022 +0900 @@ -189,36 +189,17 @@ d2 * (Rational.i r * Rational.i r) ∎ ) ⟩ Rational.i r * Rational.i r ∎ where open ≡-Reasoning - +*<-2 : {x y z : ℕ} → z > 0 → x < y → z * x < z * y +*<-2 {x} {y} {suc z} (s≤s z>0) x<y = *-monoʳ-< z x<y + +r15 : {p : ℕ} → p > 1 → p < p * p +r15 {p} p>1 = subst (λ k → k < p * p ) m*1=m (*<-2 (<-trans a<sa p>1) p>1 ) root-prime-irrational1 : ( p : ℕ ) → Prime p → ( r : Rational ) → ¬ ( Rational* r r r= p ) root-prime-irrational1 p pr r div with <-cmp (Rational.j r) 1 -... | tri< a ¬b ¬c = ⊥-elim (nat-≤> (Rational.0<j r) a ) -... | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< r04 (r03 r01)) where - i = Rational.i r - j = Rational.j r - r00 : p * j * j ≡ i * i - r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div - r01 : p ≡ i * i - r01 = begin - p ≡⟨ sym m*1=m ⟩ - p * 1 ≡⟨ sym m*1=m ⟩ - p * 1 * 1 ≡⟨ cong (λ k → p * k * k ) (sym b) ⟩ - p * j * j ≡⟨ r00 ⟩ - i * i ∎ where open ≡-Reasoning - r03 : p ≡ i * i → i > 1 - r03 eq with <-cmp i 1 - ... | tri< a ¬b ¬c = {!!} - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b c = c - r02 : p ≡ i * i → gcd p i ≡ i - r02 eq = GCD.div→gcd (r03 r01) record { factor = i ; is-factor = trans (+-comm _ 0 ) (sym r01) } - r04 : 1 ≡ i - r04 = begin - 1 ≡⟨ sym (Prime.isPrime pr _ {!!} {!!} ) ⟩ - gcd p i ≡⟨ r02 r01 ⟩ - i ∎ where open ≡-Reasoning ... | tri> ¬a ¬b c with <-cmp (Rational.i r) 1 +... | tri> ¬a₁ ¬b₁ c₁ = root-prime-irrational (Rational.j r) (Rational.i r) p c pr c₁ (r3 p (<-trans a<sa (Prime.p>1 pr ) ) r div) + (trans (GCD.gcdsym {Rational.j r} {_} ) (Rational.coprime r) ) ... | tri< a ¬b₁ ¬c = ⊥-elim ( nat-≡< (sym r05) r08) where i = Rational.i r j = Rational.j r @@ -229,17 +210,85 @@ ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c a ) r05 : p * j * j ≡ 0 - r05 = {!!} + r05 with r06 + ... | refl = r00 + r09 : p * j > 0 + r09 = begin + suc zero ≤⟨ <-trans a<sa (Prime.p>1 pr) ⟩ + p ≡⟨ sym m*1=m ⟩ + p * 1 <⟨ *<-2 (<-trans a<sa (Prime.p>1 pr)) c ⟩ + p * j ∎ where open ≤-Reasoning r08 : p * j * j > 0 - r08 = {!!} + r08 = begin + suc zero ≤⟨ r09 ⟩ + p * j ≡⟨ sym m*1=m ⟩ + (p * j) * 1 <⟨ *<-2 r09 c ⟩ + (p * j) * j ∎ where open ≤-Reasoning ... | tri≈ ¬a₁ b ¬c = ⊥-elim ( nat-≡< (sym r07) r09) where i = Rational.i r j = Rational.j r r00 : p * j * j ≡ i * i r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div r07 : p * j * j ≡ 1 - r07 = {!!} + r07 = begin + p * j * j ≡⟨ r00 ⟩ + i * i ≡⟨ cong (λ k → k * k) b ⟩ + 1 * 1 ≡⟨⟩ + 1 ∎ where open ≡-Reasoning + r19 : 1 < p * j + r19 = begin + suc 1 ≤⟨ Prime.p>1 pr ⟩ + p ≡⟨ sym m*1=m ⟩ + p * 1 <⟨ *<-2 (<-trans a<sa (Prime.p>1 pr)) c ⟩ + p * j ∎ where open ≤-Reasoning r09 : 1 < p * j * j - r09 = {!!} -... | tri> ¬a₁ ¬b₁ c₁ = root-prime-irrational (Rational.j r) (Rational.i r) p c pr c₁ (r3 p (<-trans a<sa (Prime.p>1 pr ) ) r div) - (trans (GCD.gcdsym {Rational.j r} {_} ) (Rational.coprime r) ) + r09 = begin + suc 1 ≤⟨ r19 ⟩ + p * j ≡⟨ sym m*1=m ⟩ + p * j * 1 <⟨ *<-2 (<-trans a<sa r19 ) c ⟩ + (p * j) * j ∎ where open ≤-Reasoning +root-prime-irrational1 p pr r div | tri< a ¬b ¬c = ⊥-elim (nat-≤> (Rational.0<j r) a ) +root-prime-irrational1 p pr r div | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< r04 (r03 r01)) where + i = Rational.i r + j = Rational.j r + p>0 : p > 0 + p>0 = <-trans a<sa (Prime.p>1 pr) + r00 : p * j * j ≡ i * i + r00 = r3 p p>0 r div + r01 : p ≡ i * i + r01 = begin + p ≡⟨ sym m*1=m ⟩ + p * 1 ≡⟨ sym m*1=m ⟩ + p * 1 * 1 ≡⟨ cong (λ k → p * k * k ) (sym b) ⟩ + p * j * j ≡⟨ r00 ⟩ + i * i ∎ where open ≡-Reasoning + r03 : p ≡ i * i → i > 1 + r03 eq with <-cmp i 1 + ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (sym r11) p>0 ) where + r10 : i ≡ 0 + r10 with <-cmp i 0 + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c a ) + r11 : p ≡ 0 + r11 = begin + p ≡⟨ r01 ⟩ + i * i ≡⟨ cong (λ k → k * k ) r10 ⟩ + 0 * 0 ≡⟨⟩ + 0 ∎ where open ≡-Reasoning + ... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< (sym r01 ) (Prime.p>1 pr)) + ... | tri> ¬a ¬b c = c + r02 : p ≡ i * i → gcd p i ≡ i + r02 eq = GCD.div→gcd (r03 r01) record { factor = i ; is-factor = trans (+-comm _ 0 ) (sym r01) } + r14 : i < p + r14 with <-cmp i p + ... | tri< a ¬b ¬c = a + ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< r01 (begin + suc p ≤⟨ r15 (Prime.p>1 pr) ⟩ + p * p ≡⟨ cong (λ k → k * k ) (sym b) ⟩ + i * i ∎ )) where open ≤-Reasoning + ... | tri> ¬a ¬b c = ⊥-elim (nat-≡< r01 (<-trans c (r15 (r03 r01 )))) + r04 : 1 ≡ i + r04 = begin + 1 ≡⟨ sym (Prime.isPrime pr _ r14 (<-trans a<sa (r03 r01 ))) ⟩ + gcd p i ≡⟨ r02 r01 ⟩ + i ∎ where open ≡-Reasoning