Mercurial > hg > Members > kono > Proof > automaton
changeset 339:40f7b6c3d276
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Jul 2023 14:07:36 +0900 |
parents | 78e57f261954 |
children | b818fbd86d0b |
files | automaton-in-agda/src/derive.agda |
diffstat | 1 files changed, 11 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/derive.agda Mon Jul 10 12:59:01 2023 +0900 +++ b/automaton-in-agda/src/derive.agda Mon Jul 10 14:07:36 2023 +0900 @@ -94,8 +94,10 @@ rank < x > = 0 data SB : (r : Regex Σ) → (rn : ℕ) → Set where - sb0 : (r : Regex Σ) → (rn : ℕ) → SB r rn - -- sb| : (x y r : Regex Σ) → (xn yn xy : ℕ) → SB x xn → SB y yn → xy ≡ max xn yn → (x || y) ≡ r → SB r xy + sbε : (r : Regex Σ) → SB ε 0 + sbφ : (r : Regex Σ) → SB φ 0 + sb<> : (s : Σ) → SB < s > 0 + sb| : (x y : Regex Σ) → (xn yn xy : ℕ) → SB x xn → SB y yn → xy ≡ max xn yn → SB (x || y) xy sb* : (x : Regex Σ) → (xn : ℕ) → SB (x & (x *)) (suc xn) sb& : (x y : Regex Σ) → (xn yn : ℕ) → xn < yn → SB (x & y) (suc yn) @@ -118,10 +120,13 @@ injSB : (r : Regex Σ) → InjectiveF (Derivative r) (SB r (rank r) → Bool) injSB r = record { f = fb01 (rank r) r refl ; inject = ? } where fb01 : (n : ℕ ) → (r : Regex Σ) → rank r ≡ n → Derivative r → SB r (rank r) → Bool - fb01 zero r eq record { state = r ; is-derived = unit } sb = ? - fb01 zero r eq record { state = t ; is-derived = derive d s } sb = ? - fb01 (suc n) r eq record { state = r ; is-derived = unit } sb = ? - fb01 (suc n) r eq record { state = t ; is-derived = derive d s } sb = ? + fb01 zero .ε eq d (sbε r) = true + fb01 zero .φ eq d (sbφ r) = false + fb01 zero .(< s >) eq d (sb<> s) = ? + fb01 zero .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) = ? + fb01 (suc n) .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) = ? + fb01 (suc n) .(x & (x *)) eq d (sb* x .(max (rank x) (rank (x *)))) = ? + fb01 (suc n) .(x & y) eq d (sb& x y xn .(max (rank x) (rank y)) x₁) = ? finite-derivative : (r : Regex Σ) → FiniteSet (Derivative r) finite-derivative r = inject-fin (finSBTA r) (injSB r) ?