Mercurial > hg > Members > kono > Proof > automaton
changeset 107:5431d94a4c82
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 17 Nov 2019 10:21:05 +0900 |
parents | 29e0d2934a0b |
children | 0117144967bb |
files | agda/regular-language.agda |
diffstat | 1 files changed, 15 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/regular-language.agda Sat Nov 16 21:47:12 2019 +0900 +++ b/agda/regular-language.agda Sun Nov 17 10:21:05 2019 +0900 @@ -301,10 +301,21 @@ ... | yes eq = bool-or-41 eq ... | no ne = bool-or-31 (contain-A t (Nmoves NFA finab nq h) fn (δ (automaton A) qa h) lemma11 ) where lemma11 : (q : states A ∨ states B) → exists finab (λ qn → nq qn /\ Nδ NFA qn h q) ≡ true → ab-case q (δ (automaton A) qa h) t - lemma11 (case1 qa' ) ex with cond (case1 qa') {!!} | found← finab ex - ... | exex | E = {!!} - lemma11 (case2 qb ) ex with cond (case2 qb) {!!} | found← finab ex - ... | exex | E = {!!} + lemma11 q ex with found← finab ex + ... | S with found-q S | inspect found-q S | cond (found-q S) (bool-∧→tt-0 (found-p S)) | q + ... | case1 qa | record { eq = refl } | refl | case1 qa' = lemma14 where + lemma15 : q ≡ case1 qa' → nq (case1 qa) /\ Concat-NFA.δnfa A B (case1 qa) h (case1 qa') ≡ true + lemma15 refl = found-p S + lemma14 : qa' ≡ δ (automaton A) qa h + lemma14 = sym ( equal→refl (afin A) ( bool-∧→tt-1 (lemma15 {!!} ) ) ) + ... | case1 qa | record { eq = refl } | refl | case2 qb = {!!} where + ... | case2 qb | record { eq = refl } | ab | case1 qa' = {!!} where + lemma12 : exists (afin B) (λ qb₁ → accept (automaton B) qb₁ (h ∷ t)) ≡ true → ⊥ + lemma12 = ab + ... | case2 qb | record { eq = refl } | ab | case2 qb' = {!!} where + lemma13 : exists (afin B) (λ qb₁ → accept (automaton B) qb₁ (h ∷ t)) ≡ true → ⊥ + lemma13 = ab + lemma10 : Naccept NFA finab (equal? finab (case1 (astart A))) x ≡ true → split (contain A) (contain B) x ≡ true