Mercurial > hg > Members > kono > Proof > automaton
changeset 71:5cf460a98937
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 07 Nov 2019 00:17:16 +0900 |
parents | 702ce92c45ab |
children | c75aee1d6b4b |
files | agda/logic.agda agda/regular-language.agda |
diffstat | 2 files changed, 24 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/logic.agda Wed Nov 06 23:19:53 2019 +0900 +++ b/agda/logic.agda Thu Nov 07 00:17:16 2019 +0900 @@ -67,3 +67,14 @@ infixr 130 _\/_ infixr 140 _/\_ + +open import Relation.Binary.PropositionalEquality + +≡-Bool-func : {A B : Bool } → ( A ≡ true → B ≡ true ) → ( B ≡ true → A ≡ true ) → A ≡ B +≡-Bool-func {true} {true} a→b b→a = refl +≡-Bool-func {false} {true} a→b b→a with b→a refl +... | () +≡-Bool-func {true} {false} a→b b→a with a→b refl +... | () +≡-Bool-func {false} {false} a→b b→a = refl +
--- a/agda/regular-language.agda Wed Nov 06 23:19:53 2019 +0900 +++ b/agda/regular-language.agda Thu Nov 07 00:17:16 2019 +0900 @@ -173,8 +173,17 @@ lemma2 [] q qab aA = {!!} lemma2 (h ∷ t ) q qab aA = lemma2 t {!!} {!!} {!!} --- closed-in-concat : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Concat (contain A) (contain B)) x ( M-Concat A B ) --- closed-in-concat A B x with split {!!} {!!} x --- closed-in-concat A B x | true = {!!} --- closed-in-concat A B x | false = {!!} +split-logic : {Σ : Set} → (A : List Σ → Set ) + → ( B : List Σ → Set ) → (x : List Σ ) → Set +split-logic A B [] = A [] ∧ B [] +split-logic A B (h ∷ t ) = ( A [] ∧ B ( h ∷ t ) ) ∨ split-logic ( λ t1 → A ( h ∷ t1 )) ( λ t2 → B t2 ) t + +closed-in-concat : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Concat (contain A) (contain B)) x ( M-Concat A B ) +closed-in-concat A B x = ≡-Bool-func lemma3 lemma4 where + lemma3 : Concat (contain A) (contain B) x ≡ true → contain (M-Concat A B) x ≡ true + lemma3 = {!!} + lemma4 : contain (M-Concat A B) x ≡ true → Concat (contain A) (contain B) x ≡ true + lemma4 = {!!} + +