Mercurial > hg > Members > kono > Proof > automaton
changeset 224:6077bdd19312
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 22 Jun 2021 15:39:02 +0900 (2021-06-22) |
parents | 1917df6e3c87 |
children | 9a36ec9b824a |
files | automaton-in-agda/src/gcd.agda |
diffstat | 1 files changed, 84 insertions(+), 83 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/gcd.agda Tue Jun 22 15:36:59 2021 +0900 +++ b/automaton-in-agda/src/gcd.agda Tue Jun 22 15:39:02 2021 +0900 @@ -295,84 +295,85 @@ gcd-divable : ( i j : ℕ ) → Dividable ( gcd i j ) i ∧ Dividable ( gcd i j ) j -gcd-divable i j = n-induction {_} {_} {ℕ ∧ ℕ} +gcd-divable i j = f-induction {_} {_} {ℕ ∧ ℕ} {λ p → Dividable ( gcd (proj1 p) (proj2 p) ) (proj1 p) ∧ Dividable ( gcd (proj1 p) (proj2 p) ) (proj2 p)} F I ⟪ i , j ⟫ where F : ℕ ∧ ℕ → ℕ - F ⟪ 0 , j ⟫ = 0 + F ⟪ 0 , 0 ⟫ = 0 + F ⟪ 0 , suc j ⟫ = 0 F ⟪ suc i , 0 ⟫ = 0 - F ⟪ i , j ⟫ with <-cmp i j - ... | tri< a ¬b ¬c = j + F ⟪ suc i , suc j ⟫ with <-cmp i j + ... | tri< a ¬b ¬c = suc j ... | tri≈ ¬a b ¬c = 0 - ... | tri> ¬a ¬b c = i - next : ℕ ∧ ℕ → ℕ ∧ ℕ - next ⟪ i , j ⟫ with <-cmp i j - ... | tri< a ¬b ¬c = ⟪ i , j - i ⟫ - ... | tri≈ ¬a b ¬c = ⟪ 0 , 0 ⟫ - ... | tri> ¬a ¬b c = ⟪ i - j , j ⟫ + ... | tri> ¬a ¬b c = suc i F0 : { i j : ℕ } → F ⟪ i , j ⟫ ≡ 0 → (i ≡ j) ∨ (i ≡ 0 ) ∨ (j ≡ 0) F0 {zero} {zero} p = case1 refl F0 {zero} {suc j} p = case2 (case1 refl) F0 {suc i} {zero} p = case2 (case2 refl) F0 {suc i} {suc j} p with <-cmp i j - ... | tri< a ¬b ¬c = ⊥-elim ( F11 p ) where - F11 : F ⟪ suc i , suc j ⟫ ≡ 0 → ⊥ - F11 eq with <-cmp (suc i) (suc j) - ... | tri≈ ¬a b ¬c = nat-≡< b (s≤s a) - ... | tri≈ ¬a refl ¬c = case1 refl - ... | tri> ¬a ¬b c = ⊥-elim (F11 p) where - F11 : F ⟪ suc i , suc j ⟫ ≡ 0 → ⊥ - F11 eq with <-cmp (suc i) (suc j) - ... | tri≈ ¬a b ¬c = nat-≡< (sym b) (s≤s c) - Fcase1 : { i j : ℕ } → i ≡ j → Dividable (gcd i j) i ∧ Dividable (gcd i j) j - Fcase1 {i} {i} refl = ⟪ subst (λ k → Dividable k i) (sym (gcdmm i i)) div= , subst (λ k → Dividable k i) (sym (gcdmm i i)) div= ⟫ - Fcase21 : { i j : ℕ } → i ≡ 0 → Dividable (gcd i j) i ∧ Dividable (gcd i j) j - Fcase21 {0} {j} refl = ⟪ subst (λ k → Dividable k 0) (sym (trans (gcdsym {0} {j} ) (gcd20 j)))div0 - , subst (λ k → Dividable k j) (sym (trans (gcdsym {0} {j}) (gcd20 j))) div= ⟫ - Fcase22 : { i j : ℕ } → j ≡ 0 → Dividable (gcd i j) i ∧ Dividable (gcd i j) j - Fcase22 {i} {0} refl = ⟪ subst (λ k → Dividable k i) (sym (gcd20 i)) div= - , subst (λ k → Dividable k 0) (sym (gcd20 i)) div0 ⟫ - Fn0 : {i : ℕ} → (F (next ⟪ i , 0 ⟫) ≡ 0 ) ∧ (F (next ⟪ 0 , i ⟫) ≡ 0 ) - Fn0 {zero} = ⟪ refl , refl ⟫ - Fn0 {suc i} = ⟪ refl , refl ⟫ - Fn= : {i j : ℕ} → i ≡ j → F (next ⟪ i , j ⟫) ≡ 0 - Fn= {0} refl = refl - Fn= {suc i} refl with <-cmp (suc i) (suc i) - ... | tri< a ¬b ¬c = subst (λ k → F ⟪ suc i , k ⟫ ≡ 0 ) (sym (minus<=0 {suc i} {suc i} ≤-refl )) refl - ... | tri≈ ¬a b ¬c = refl - ... | tri> ¬a ¬b c = subst (λ k → F ⟪ k , suc i ⟫ ≡ 0 ) (sym (minus<=0 {suc i} {suc i} ≤-refl )) refl - F01 : {i j : ℕ} → F ⟪ i , j - i ⟫ ≡ 0 → F (next ⟪ i , j - i ⟫) ≡ 0 - F01 {zero} {zero} eq = refl - F01 {zero} {suc j} eq = refl - F01 {suc i} {zero} eq = refl - F01 {suc i} {suc j} eq with F0 {suc i} {j - i} eq - ... | case1 x = Fn= {suc i} {j - i } x -- suc i ≡ suc j - suc i - ... | case2 (case2 x) = subst (λ k → F (next ⟪ suc i , k ⟫) ≡ 0 ) (sym x) (proj1 (Fn0 {suc i})) -- j - i ≡ 0 - F00 : {p : ℕ ∧ ℕ} → F (next p) ≡ zero → Dividable (gcd (proj1 p) (proj2 p)) (proj1 p) ∧ Dividable (gcd (proj1 p) (proj2 p)) (proj2 p) - F00 {⟪ 0 , j ⟫} eq = Fcase21 refl - F00 {⟪ i , 0 ⟫} eq = Fcase22 refl - F00 {⟪ suc i , suc j ⟫} eq with <-cmp (suc i) (suc j) - ... | tri< a ¬b ¬c with F0 {suc i} {j - i} eq - ... | case2 (case2 j-i=0 ) = Fcase1 (sym (i-j=0→i=j (<to≤ a) j-i=0 )) - ... | case1 (si=j-i) = {!!} - F00 {⟪ suc i , suc j ⟫} eq | tri≈ ¬a b ¬c = Fcase1 b -- case1 b - F00 {⟪ suc i , suc j ⟫} eq | tri> ¬a ¬b c with F0 {i - j} {suc j} eq - ... | case1 x = {!!} - ... | case2 (case1 x) = Fcase1 (i-j=0→i=j (<to≤ c) x ) + ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n )) + ... | tri≈ ¬a refl ¬c = case1 refl + ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n )) + F00 : {p : ℕ ∧ ℕ} → F p ≡ zero → Dividable (gcd (proj1 p) (proj2 p)) (proj1 p) ∧ Dividable (gcd (proj1 p) (proj2 p)) (proj2 p) + F00 {⟪ i , j ⟫} eq with F0 {i} {j} eq + ... | case1 refl = ⟪ subst (λ k → Dividable k i) (sym (gcdmm i i)) div= , subst (λ k → Dividable k i) (sym (gcdmm i i)) div= ⟫ + ... | case2 (case1 refl) = ⟪ subst (λ k → Dividable k i) (sym (trans (gcdsym {0} {j} ) (gcd20 j)))div0 + , subst (λ k → Dividable k j) (sym (trans (gcdsym {0} {j}) (gcd20 j))) div= ⟫ + ... | case2 (case2 refl) = ⟪ subst (λ k → Dividable k i) (sym (gcd20 i)) div= + , subst (λ k → Dividable k j) (sym (gcd20 i)) div0 ⟫ + Fsym : {i j : ℕ } → F ⟪ i , j ⟫ ≡ F ⟪ j , i ⟫ + Fsym {0} {0} = refl + Fsym {0} {suc j} = refl + Fsym {suc i} {0} = refl + Fsym {suc i} {suc j} with <-cmp i j | <-cmp j i + ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁) + ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (¬b (sym b)) + ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl + ... | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = ⊥-elim (¬b refl) + ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl + ... | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = ⊥-elim (¬b refl) + ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl + ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬b (sym b)) + ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁) + + record Fdec ( i j : ℕ ) : Set where + field + ni : ℕ + nj : ℕ + fdec : 0 < F ⟪ i , j ⟫ → F ⟪ ni , nj ⟫ < F ⟪ i , j ⟫ - Fdecl : ( p : ℕ ∧ ℕ ) → 0 < F p → F (next p) < F p - Fdecl ⟪ 0 , j ⟫ () - Fdecl ⟪ suc i , 0 ⟫ () - Fdecl ⟪ suc i , suc j ⟫ 0<F with <-cmp (suc i) (suc j) - ... | tri< a ¬b ¬c = fd1 where - fd1 : F ⟪ suc i , j - i ⟫ < suc j - fd1 with <-cmp i ( j - i ) - ... | tri< a ¬b ¬c = {!!} -- j - i < j - ... | tri≈ ¬a b ¬c = {!!} -- 0 < j - ... | tri> ¬a ¬b c = {!!} -- i < j - ... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< refl 0<F ) - ... | tri> ¬a ¬b c = fd2 where - fd2 : F ⟪ i - j , suc j ⟫ < suc i - fd2 = {!!} + fd1 : ( i j k : ℕ ) → i < j → k ≡ j - i → F ⟪ suc i , k ⟫ < F ⟪ suc i , suc j ⟫ + fd1 i j 0 i<j eq = ⊥-elim ( nat-≡< eq (minus>0 {i} {j} i<j )) + fd1 i j (suc k) i<j eq = fd2 i j k i<j eq where + fd2 : ( i j k : ℕ ) → i < j → suc k ≡ j - i → F ⟪ suc i , suc k ⟫ < F ⟪ suc i , suc j ⟫ + fd2 i j k i<j eq with <-cmp i k | <-cmp i j + ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = fd3 where + fd3 : suc k < suc j -- suc j - suc i < suc j + fd3 = subst (λ g → g < suc j) (sym eq) (y-x<y {suc i} {suc j} (s≤s z≤n) (s≤s z≤n)) + ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (⊥-elim (¬a i<j)) + ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim (⊥-elim (¬a i<j)) + ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = s≤s z≤n + ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ⊥-elim (¬a₁ i<j) + ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = s≤s z≤n -- i > j + ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = fd4 where + fd4 : suc i < suc j + fd4 = s≤s a + ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬a₁ i<j) + ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (¬a₁ i<j) + + fedc0 : (i j : ℕ ) → Fdec i j + fedc0 0 0 = record { ni = 0 ; nj = 0 ; fdec = λ () } + fedc0 (suc i) 0 = record { ni = suc i ; nj = 0 ; fdec = λ () } + fedc0 0 (suc j) = record { ni = 0 ; nj = suc j ; fdec = λ () } + fedc0 (suc i) (suc j) with <-cmp i j + ... | tri< i<j ¬b ¬c = record { ni = suc i ; nj = j - i ; fdec = λ lt → fd1 i j (j - i) i<j refl } + ... | tri≈ ¬a refl ¬c = record { ni = suc i ; nj = suc j ; fdec = λ lt → ⊥-elim (nat-≡< fd0 lt) } where + fd0 : {i : ℕ } → 0 ≡ F ⟪ suc i , suc i ⟫ + fd0 {i} with <-cmp i i + ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) + ... | tri≈ ¬a b ¬c = refl + ... | tri> ¬a ¬b c = ⊥-elim ( ¬b refl ) + ... | tri> ¬a ¬b c = record { ni = i - j ; nj = suc j ; fdec = λ lt → + subst₂ (λ s t → s < t) (Fsym {suc j} {i - j}) (Fsym {suc j} {suc i}) (fd1 j i (i - j) c refl ) } ind3 : {i j : ℕ } → i < j → Dividable (gcd (suc i) (j - i)) (suc i) @@ -404,25 +405,25 @@ Dividable (gcd (suc j) (suc i)) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) (gcdsym {suc j} ) ⟩ Dividable (gcd (suc i) (suc j)) (j - i) ∎ ) prev where open ≡-Reasoning - ind : (p : ℕ ∧ ℕ ) → ( - Dividable (gcd (proj1 (next p)) (proj2 (next p))) (proj1 (next p)) - ∧ Dividable (gcd (proj1 (next p)) (proj2 (next p))) (proj2 (next p)) ) - → Dividable (gcd (proj1 p) (proj2 p)) (proj1 p) ∧ Dividable (gcd (proj1 p) (proj2 p)) (proj2 p) - ind ⟪ zero , zero ⟫ prev = ind0 where + ind : ( i j : ℕ ) → + Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.ni (fedc0 i j)) + ∧ Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.nj (fedc0 i j)) + → Dividable (gcd i j) i ∧ Dividable (gcd i j) j + ind zero zero prev = ind0 where ind0 : Dividable (gcd zero zero) zero ∧ Dividable (gcd zero zero) zero ind0 = ⟪ div0 , div0 ⟫ - ind ⟪ zero , (suc j) ⟫ prev = ind1 where + ind zero (suc j) prev = ind1 where ind1 : Dividable (gcd zero (suc j)) zero ∧ Dividable (gcd zero (suc j)) (suc j) ind1 = ⟪ div0 , subst (λ k → Dividable k (suc j)) (sym (trans (gcdsym {zero} {suc j}) (gcd20 (suc j)))) div= ⟫ - ind ⟪ (suc i) , zero ⟫ prev = ind2 where + ind (suc i) zero prev = ind2 where ind2 : Dividable (gcd (suc i) zero) (suc i) ∧ Dividable (gcd (suc i) zero) zero ind2 = ⟪ subst (λ k → Dividable k (suc i)) (sym (trans refl (gcd20 (suc i)))) div= , div0 ⟫ - ind ⟪ (suc i) , (suc j) ⟫ prev with <-cmp i j - ... | tri< a ¬b ¬c = ⟪ ind3 a (suc i) , ind6 a (ind4 a {!!}) (ind3 a {!!} ) ⟫ where + ind (suc i) (suc j) prev with <-cmp i j + ... | tri< a ¬b ¬c = ⟪ ind3 a (proj1 prev) , ind6 a (ind4 a (proj2 prev)) (ind3 a (proj1 prev) ) ⟫ where ... | tri≈ ¬a refl ¬c = ⟪ ind5 , ind5 ⟫ where ind5 : Dividable (gcd (suc i) (suc i)) (suc i) ind5 = subst (λ k → Dividable k (suc j)) (sym (gcdmm (suc i) (suc i))) div= - ... | tri> ¬a ¬b c = ⟪ ind8 c {!!} {!!} , ind10 c {!!} ⟫ where + ... | tri> ¬a ¬b c = ⟪ ind8 c (proj1 prev) (proj2 prev) , ind10 c (proj2 prev) ⟫ where ind9 : {i j : ℕ} → i < j → gcd (j - i) (suc i) ≡ gcd (suc j) (suc i) ind9 {i} {j} i<j = begin gcd (j - i ) (suc i) ≡⟨ sym (gcd+j (j - i ) (suc i) ) ⟩ @@ -441,12 +442,12 @@ gcd (i - j + suc j) (suc j) ≡⟨ cong (λ k → gcd k (suc j)) (ind7 j<i ) ⟩ gcd (suc i) (suc j) ∎ ) dji where open ≡-Reasoning - I : Ninduction (ℕ ∧ ℕ) _ F + I : Finduction (ℕ ∧ ℕ) _ F I = record { - pnext = λ p → next p - ; fzero = F00 - ; decline = λ {p} lt → Fdecl p lt - ; ind = λ {p} prev → ind p prev + fzero = F00 + ; pnext = λ p → ⟪ Fdec.ni (fedc0 (proj1 p) (proj2 p)) , Fdec.nj (fedc0 (proj1 p) (proj2 p)) ⟫ + ; decline = λ {p} lt → Fdec.fdec (fedc0 (proj1 p) (proj2 p)) lt + ; ind = λ {p} prev → ind (proj1 p ) ( proj2 p ) prev }