Mercurial > hg > Members > kono > Proof > automaton
changeset 133:65bea0aad363
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Nov 2019 14:30:11 +0900 |
parents | 370b3fc69c1a |
children | 14cf0e1c8d91 |
files | agda/finiteSet.agda |
diffstat | 1 files changed, 48 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/finiteSet.agda Sun Nov 24 11:37:00 2019 +0900 +++ b/agda/finiteSet.agda Sun Nov 24 14:30:11 2019 +0900 @@ -388,6 +388,16 @@ elm<n : toℕ (FiniteSet.F←Q fa elm ) < n open Fin-< + +Fin-<-cong : { n m : ℕ } (n<m : n < m ) { A : Set } (fa : FiniteSet A {m}) + → ( s t : Fin-< n<m fa ) + → ( elm s ≡ elm t) → ( elm<n s ≅ elm<n t ) → s ≡ t +Fin-<-cong n<m fa _ _ refl HE.refl = refl + +lemma1 : {m n : ℕ } → ( i j : m < n ) → i ≡ j +lemma1 {zero} {suc n} (s≤s z≤n) (s≤s z≤n) = refl +lemma1 {suc m} {suc n} (s≤s i) (s≤s j) = cong ( λ k → s≤s k ) ( lemma1 {m} {n} i j ) + fin-< : {A : Set} → { n m : ℕ } → (n<m : n < m ) → (fa : FiniteSet A {m}) → FiniteSet (Fin-< n<m fa) {n} fin-< {A} {zero} {m} (s≤s z≤n) fa = record { Q←F = λ () ; F←Q = λ () ; finiso← = λ () ; finiso→ = λ () } fin-< {A} {suc n} {m} (s≤s n<m) fa = iso-fin (fin-∨1 (fin-< {A} {n} {m} (Data.Nat.Properties.<-trans n<m a<sa) fa)) iso where @@ -395,11 +405,11 @@ fin- = fin-< {A} {n} {m} (Data.Nat.Properties.<-trans n<m a<sa) fa iso : ISO (One ∨ Fin-< (Data.Nat.Properties.<-trans n<m a<sa) fa) (Fin-< (s≤s n<m) fa) lastf = FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa) )) - last1 = FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)) c1 : toℕ lastf ≡ n c1 = subst (λ k → toℕ k ≡ n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k ≡ n) (sym (toℕ-fromℕ≤ _ )) refl ) f<n : toℕ lastf < suc n f<n = subst ( λ k → k < suc n ) (sym c1) a<sa + last1 = FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)) ISO.A←B iso x with Data.Nat.Properties.<-cmp (toℕ (FiniteSet.F←Q fa (elm x )) ) n ISO.A←B iso x | tri< a ¬b ¬c = case2 record { elm = elm x ; elm<n = a } ISO.A←B iso x | tri≈ ¬a b ¬c = case1 one @@ -412,16 +422,48 @@ ISO.iso← iso (case1 one) | tri> ¬a ¬b c = ⊥-elim ( ¬b c1 ) ISO.iso← iso (case2 x) with Data.Nat.Properties.<-cmp (toℕ (FiniteSet.F←Q fa (elm x))) n ISO.iso← iso (case2 x) | tri< a ¬b ¬c = cong ( λ k → case2 record { elm = elm x ; elm<n = k } ) (lemma1 _ _) where - lemma1 : {m n : ℕ } → ( i j : m < n ) → i ≡ j - lemma1 {zero} {suc n} (s≤s z≤n) (s≤s z≤n) = refl - lemma1 {suc m} {suc n} (s≤s i) (s≤s j) = cong ( λ k → s≤s k ) ( lemma1 {m} {n} i j ) ISO.iso← iso (case2 x) | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (elm<n x) ) ISO.iso← iso (case2 x) | tri> ¬a ¬b c = ⊥-elim ( nat-<> c (elm<n x) ) ISO.iso→ iso x with ISO.A←B iso x ISO.iso→ iso x | case1 one with Data.Nat.Properties.<-cmp (toℕ (FiniteSet.F←Q fa (elm x )) ) n | inspect (λ x → ISO.B←A iso ( ISO.A←B iso x )) x + ... | tri> ¬a ¬b c | record { eq = e } = ⊥-elim ( nat-≤> c (elm<n x) ) ... | tri< a ¬b ¬c | record { eq = e } = {!!} - ... | tri≈ ¬a b ¬c | record { eq = e } = {!!} - ... | tri> ¬a ¬b c | record { eq = e } = ⊥-elim ( nat-≤> c (elm<n x) ) + ... | tri≈ ¬a b ¬c | record { eq = e } = begin + record { elm = FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)) ; elm<n = lemma5 } + ≡⟨ Fin-<-cong (s≤s n<m) fa _ _ (sym (lemma2 b)) lemma7 ⟩ + record { elm = elm x ; elm<n = elm<n x } + ≡⟨⟩ + x + ∎ + where + open ≡-Reasoning + lemma3 : {n m : ℕ } (x : Fin m) → toℕ x ≡ n → (n<m : n < m ) → x ≡ fromℕ≤ n<m + lemma3 _ refl n<m = sym ( fromℕ≤-toℕ _ n<m ) + lemma4 : {x : A } → (x=n : toℕ (FiniteSet.F←Q fa x) ≡ n ) → fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa) ≡ FiniteSet.F←Q fa x + lemma4 {x} refl = sym ( lemma3 _ refl (Data.Nat.Properties.<-trans n<m a<sa)) + lemma2 : {x : A} → toℕ (FiniteSet.F←Q fa x) ≡ n → x ≡ FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)) + lemma2 {x} refl = sym ( begin + FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)) + ≡⟨ cong (λ k → FiniteSet.Q←F fa k) (lemma4 refl) ⟩ + FiniteSet.Q←F fa ( FiniteSet.F←Q fa x ) + ≡⟨ FiniteSet.finiso→ fa _ ⟩ + x + ∎ ) where open ≡-Reasoning + lemma5 : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)))) < suc n + lemma5 = subst (λ k → suc k ≤ suc n) + (sym + (subst (λ k → toℕ k ≡ n) + (sym + (FiniteSet.finiso← fa + (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)))) + (subst (λ k → k ≡ n) + (sym (toℕ-fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa))) refl))) + a<sa + lemma7 : lemma5 ≅ elm<n x + lemma7 with lemma2 b + ... | refl with lemma1 lemma5 (elm<n x) + ... | refl = HE.refl + ISO.iso→ iso x | case2 x1 = {!!} -- ISO.iso→ iso x | case2 x1 | tri< a ¬b ¬c = ? -- ISO.iso→ iso x | case2 x1 | tri≈ ¬a b ¬c = {!!}