Mercurial > hg > Members > kono > Proof > automaton
changeset 300:67d8e42b7782
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 31 Dec 2021 20:02:54 +0900 |
parents | 841f4064e515 |
children | 30033f273f1d |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 25 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Fri Dec 31 17:27:58 2021 +0900 +++ b/automaton-in-agda/src/non-regular.agda Fri Dec 31 20:02:54 2021 +0900 @@ -105,11 +105,11 @@ open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -record TA1 { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) ( q : Q ) (is : List Σ) : Set where +record TA1 { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) ( q qd : Q ) (is : List Σ) : Set where field y z : List Σ yz=is : y ++ z ≡ is - trace-z : Trace fa z q + trace-z : Trace fa z qd trace-yz : Trace fa (y ++ z) q record TA { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) ( q : Q ) (is : List Σ) : Set where @@ -127,34 +127,36 @@ → TA fa q is make-TA {Q} {Σ} fa finq q qd is tr dup = tra-phase1 q is tr dup where open TA - tra-phase2 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase2 finq qd (tr→qs fa is q tr) ≡ true → TA1 fa q is + tra-phase2 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) + → phase2 finq qd (tr→qs fa is q tr) ≡ true → TA1 fa q qd is tra-phase2 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect ( equal? finq qd) q - ... | true | record { eq = eq } = {!!} - ... | false | record { eq = eq } = {!!} + ... | true | record { eq = eq } = record { y = [] ; z = i ∷ is ; yz=is = refl + ; trace-z = subst (λ k → Trace fa (i ∷ is) k ) (sym (equal→refl finq eq)) (tnext q tr) ; trace-yz = tnext q tr } + ... | false | record { eq = eq } = record { y = i ∷ TA1.y ta ; z = TA1.z ta ; yz=is = cong (i ∷_ ) (TA1.yz=is ta ) + ; trace-z = TA1.trace-z ta ; trace-yz = tnext q ( TA1.trace-yz ta ) } where + ta : TA1 fa (δ fa q i) qd is + ta = tra-phase2 (δ fa q i) is tr p tra-phase1 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase1 finq qd (tr→qs fa is q tr) ≡ true → TA fa q is tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect (equal? finq qd) q | phase1 finq qd (tr→qs fa is (δ fa q i) tr) | inspect ( phase1 finq qd) (tr→qs fa is (δ fa q i) tr) ... | true | record { eq = eq } | false | record { eq = np} = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta) - ; trace-xyz = {!!} - ; trace-xyyz = {!!} } where --- : phase2 finq qd (tr→qs fa (y ta ++ z ta) qd (trace-yz ta a<sa)) --- ≡ true --- : phase1 finq qd (tr→qs fa (y ta ++ z ta) qd (trace-yz ta a<sa)) --- ≡ false - ta : TA1 fa (δ fa q i ) is - ta = tra-phase2 (δ fa q i ) is tr p - tra-02 : (y1 : List Σ) → (q : Q) → (tr : Trace fa (y1 ++ TA1.z ta) q) - → phase2 finq qd (tr→qs fa (y1 ++ TA1.z ta) q tr) ≡ true - → phase1 finq qd (tr→qs fa (y1 ++ TA1.z ta) q tr) ≡ false - → Trace fa (y1 ++ TA1.y ta ++ TA1.z ta) q - tra-02 [] q tr p np with equal? finq qd q | inspect ( equal? finq qd) q - ... | true | record { eq = eq } = subst (λ k → Trace fa (TA1.y ta ++ TA1.z ta) k ) (equal→refl finq eq) (TA1.trace-yz ta ) + ; trace-xyz = tnext q (TA1.trace-yz ta) + ; trace-xyyz = tnext q (tra-02 ? ? ? (TA1.trace-yz ta) ? ? ) } where + -- tra-02 (i ∷ TA1.y ta) q (sym (equal→refl finq eq)) (tnext q (TA1.trace-yz ta)) {!!} {!!} } where + ta : TA1 fa (δ fa q i ) qd is + ta = tra-phase2 (δ fa q i ) is tr p + tra-02 : (y1 : List Σ) → (q0 : Q) → q ≡ qd → (tr : Trace fa (y1 ++ TA1.z ta) (δ fa q i)) + → phase2 finq qd (tr→qs fa (y1 ++ TA1.z ta) q0 tr) ≡ true + → phase1 finq qd (tr→qs fa (y1 ++ TA1.z ta) q0 tr) ≡ false + → Trace fa (y1 ++ i ∷ TA1.y ta ++ TA1.z ta) (δ fa q0 i) + tra-02 [] q0 q=qd tr p np with equal? finq qd q0 | inspect ( equal? finq qd) q0 + ... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ TA1.y ta ++ TA1.z ta) k ) {!!} (tnext q (TA1.trace-yz ta) ) where + tra-03 : q ≡ q0 + tra-03 = trans q=qd ((equal→refl finq eq) ) ... | false | record { eq = ne } = {!!} - tra-02 (y1 ∷ ys) q (tnext q tr) p np with equal? finq qd q | inspect ( equal? finq qd) q + tra-02 (y1 ∷ ys) q0 q=qd (tnext q tr) p np with equal? finq qd q | inspect ( equal? finq qd) q ... | true | record { eq = eq } = {!!} - ... | false | record { eq = ne } = tnext q (tra-02 ys (δ fa q y1) tr p np ) - tra-01 : (y1 : List Σ) → Trace fa (y1 ++ TA1.z ta) qd → Trace fa (y1 ++ TA1.y ta ++ TA1.z ta) qd - tra-01 = {!!} + ... | false | record { eq = ne } = {!!} -- tnext q (tra-02 ys (δ fa q y1) q=qd tr p np ) ... | true | record { eq = eq } | true | record { eq = np} = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where ta : TA fa (δ fa q i ) is