Mercurial > hg > Members > kono > Proof > automaton
changeset 110:795850729aaa
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 17 Nov 2019 18:07:47 +0900 |
parents | 330fa494f0e8 |
children | ed0a2dad62f4 |
files | agda/regular-language.agda |
diffstat | 1 files changed, 3 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/regular-language.agda Sun Nov 17 17:47:59 2019 +0900 +++ b/agda/regular-language.agda Sun Nov 17 18:07:47 2019 +0900 @@ -305,11 +305,9 @@ lemma11 (case2 qb) ex with found← finab ex ... | S with found-q S | inspect found-q S | cond (found-q S) (bool-∧→tt-0 (found-p S)) lemma11 (case2 qb) ex | S | case2 qb' | record { eq = refl } | nb = - contra-position (λ fb → subst (λ k → accept (automaton B) k t ≡ true ) (sym (equal→refl (afin B) (bool-∧→tt-1 (found-p S)))) fb ) nb where - lemma13 : accept (automaton B) qb' (h ∷ t) ≡ true → ⊥ - lemma13 = nb - lemma14 : nq (case2 qb') /\ equal? (afin B) (δ (automaton B) qb' h) qb ≡ true - lemma14 = found-p S + contra-position lemma13 nb where + lemma13 : accept (automaton B) qb t ≡ true → accept (automaton B) qb' (h ∷ t) ≡ true + lemma13 fb = subst (λ k → accept (automaton B) k t ≡ true ) (sym (equal→refl (afin B) (bool-∧→tt-1 (found-p S)))) fb lemma11 (case2 qb) ex | S | case1 qa | record { eq = refl } | refl with bool-∧→tt-1 (found-p S) ... | eee = contra-position lemma12 ne where lemma12 : accept (automaton B) qb t ≡ true → aend (automaton A) qa /\ accept (automaton B) (δ (automaton B) (astart B) h) t ≡ true