Mercurial > hg > Members > kono > Proof > automaton
changeset 230:a72bcc6eadad
prime done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 24 Jun 2021 11:02:58 +0900 |
parents | fb080920c104 |
children | 54977cc189e6 |
files | automaton-in-agda/src/gcd.agda automaton-in-agda/src/prime.agda |
diffstat | 2 files changed, 43 insertions(+), 41 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/gcd.agda Thu Jun 24 00:37:46 2021 +0900 +++ b/automaton-in-agda/src/gcd.agda Thu Jun 24 11:02:58 2021 +0900 @@ -508,39 +508,21 @@ Dividable.factor d * k + 0 ≡⟨ Dividable.is-factor d ⟩ i ∎ ) 0<i ) where open ≡-Reasoning -gcd-≤ : ( i j : ℕ ) → i ≤ j → gcd i j ≤ j -gcd-≤ zero zero z≤n = ≤-refl -gcd-≤ 0 (suc j) z≤n = subst (λ k → k ≤ suc j ) (trans (sym (gcd20 (suc j))) (gcdsym {suc j} {zero})) ≤-refl -gcd-≤ (suc i) (suc j) (s≤s i<j) = begin +m*n=m→n : {m n : ℕ } → 0 < m → m * n ≡ m * 1 → n ≡ 1 +m*n=m→n {suc m} {n} (s≤s lt) eq = *-cancelˡ-≡ m eq + +gcd-≤ : ( i j : ℕ ) → 0 < i → i ≤ j → gcd i j ≤ i +gcd-≤ zero _ () z≤n +gcd-≤ (suc i) (suc j) _ (s≤s i<j) = begin gcd (suc i) (suc j) ≡⟨ sym m*1=m ⟩ gcd (suc i) (suc j) * 1 ≤⟨ *-monoʳ-≤ (gcd (suc i) (suc j)) (f-div>0 d (s≤s z≤n)) ⟩ gcd (suc i) (suc j) * f ≡⟨ +-comm 0 _ ⟩ gcd (suc i) (suc j) * f + 0 ≡⟨ cong (λ k → k + 0) (*-comm (gcd (suc i) (suc j)) _ ) ⟩ - Dividable.factor (proj2 (gcd-dividable (suc i) (suc j))) * gcd (suc i) (suc j) + 0 ≡⟨ Dividable.is-factor (proj2 (gcd-dividable (suc i) (suc j))) ⟩ - suc j ∎ where - d = proj2 (gcd-dividable (suc i) (suc j)) - f = Dividable.factor (proj2 (gcd-dividable (suc i) (suc j))) + Dividable.factor (proj1 (gcd-dividable (suc i) (suc j))) * gcd (suc i) (suc j) + 0 ≡⟨ Dividable.is-factor (proj1 (gcd-dividable (suc i) (suc j))) ⟩ + suc i ∎ where + d = proj1 (gcd-dividable (suc i) (suc j)) + f = Dividable.factor (proj1 (gcd-dividable (suc i) (suc j))) open ≤-Reasoning -m*n=m→n : {m n : ℕ } → 0 < m → m * n ≡ m * 1 → n ≡ 1 -m*n=m→n {suc m} {n} (s≤s lt) eq = *-cancelˡ-≡ m eq - -gcd-< : ( i j : ℕ ) → 0 < i → i < j → gcd i j < j -gcd-< i j 0<i i<j with <-cmp ( gcd i j ) j -... | tri< a ¬b ¬c = a -... | tri≈ ¬a b ¬c = ⊥-elim (g111 (Dividable.factor (proj1 (gcd-dividable i j))) - (subst (λ k → (Dividable.factor (proj1 (gcd-dividable i j))) * k + 0 ≡ i ) b (Dividable.is-factor (proj1 (gcd-dividable i j))))) where - g111 : (f : ℕ) → f * j + 0 ≡ i → ⊥ - g111 zero eq = nat-≡< eq 0<i - g111 (suc zero) eq = nat-≡< (sym eq) (begin - suc i ≤⟨ i<j ⟩ - j ≡⟨ trans (+-comm 0 _) (+-comm 0 _) ⟩ - 1 * j + 0 ∎ ) where open ≤-Reasoning - g111 (suc (suc f)) eq = nat-≡< (sym eq) ( begin - suc i ≤⟨ i<j ⟩ - j ≡⟨ +-comm 0 _ ⟩ - j + 0 ≤⟨ +-monoʳ-≤ j z≤n ⟩ - j + ((j + f * j) + 0) ≡⟨ sym (+-assoc j _ _) ⟩ - j + (j + f * j) + 0 ≡⟨ refl ⟩ - suc (suc f) * j + 0 ∎ ) where open ≤-Reasoning -... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (gcd-≤ i j (<to≤ i<j)) c ) +gcd-≥ : ( i j : ℕ ) → 0 < i → i ≤ j → gcd j i ≤ i +gcd-≥ i j 0<i i≤j = subst (λ k → k ≤ i) (gcdsym {i} {j}) ( gcd-≤ i j 0<i i≤j )
--- a/automaton-in-agda/src/prime.agda Thu Jun 24 00:37:46 2021 +0900 +++ b/automaton-in-agda/src/prime.agda Thu Jun 24 11:02:58 2021 +0900 @@ -49,37 +49,57 @@ open _∧_ data Factoring (m : ℕ ) : (n : ℕ) → Set where - findFactor : (n : ℕ) → ( (j : ℕ ) → m ≤ j → j < n → gcd n j ≡ 1 ) → Factoring m n + findFactor : (n : ℕ) → m ≤ n → ( (j : ℕ ) → m ≤ j → j < n → gcd n j ≡ 1 ) → Factoring m n skipFactor : (n : ℕ) → n < m → Factoring m n nonPrime : { n : ℕ } → 1 < n → ¬ Prime n → NonPrime n -nonPrime {n} 1<n np = np1 n n np 1<n (findFactor n (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n ) )) where +nonPrime {n} 1<n np = np1 n n np 1<n (findFactor n ≤-refl (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n ) )) where mg1 : (n m : ℕ )→ ( (j : ℕ ) → m < j → j < n → gcd n j ≡ 1 ) → gcd n m ≡ 1 → (j : ℕ) → m ≤ j → j < n → gcd n j ≡ 1 mg1 n m mg gcd j m<j j<n with <-cmp m j ... | tri< a ¬b ¬c = mg j a j<n ... | tri≈ ¬a refl ¬c = gcd ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<j c) np1 : ( n m : ℕ ) → ¬ Prime n → 1 < n → Factoring m n → NonPrime n - np1 n zero np 1<n (findFactor n mg ) = ⊥-elim ( np record { isPrime = λ j lt _ → mg j z≤n lt ; p>1 = 1<n } ) -- zero < j , j < n - np1 n (suc m) np 1<n (findFactor n mg) with <-cmp ( gcd n m ) 1 + np1 n zero np 1<n (findFactor n m≤n mg ) = ⊥-elim ( np record { isPrime = λ j lt _ → mg j z≤n lt ; p>1 = 1<n } ) -- zero < j , j < n + np1 n (suc m) np 1<n (findFactor n m≤n mg) with <-cmp ( gcd n m ) 1 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> ( gcd>0 n m (<-trans (s≤s z≤n) 1<n) 0<m ) a ) where 0<m : 0 < m 0<m with <-cmp 0 m ... | tri< a ¬b ¬c = a ... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-<> a (subst (λ k → 1 < k) (sym (gcd20 n)) 1<n )) - ... | tri≈ ¬a b ¬c = np1 n m np 1<n (findFactor n (mg1 n m mg b ) ) + ... | tri≈ ¬a b ¬c = np1 n m np 1<n (findFactor n (≤-trans refl-≤s m≤n) (mg1 n m mg b ) ) ... | tri> ¬a ¬b c with PrimeP ( gcd n m ) ... | yes y = record { factor = gcd n m ; prime = y ; dividable = proj1 (gcd-dividable n m ) } - ... | no ngcd with np1 (gcd n m) m ngcd c (skipFactor (gcd n m) {!!}) - ... | cc = record { factor = NonPrime.factor cc ; prime = NonPrime.prime cc ; dividable = + ... | no ngcd = np2 where + skip-case : NonPrime (gcd n m) → NonPrime n + skip-case cc = record { factor = NonPrime.factor cc ; prime = NonPrime.prime cc ; dividable = record { factor = (Dividable.factor (proj1 (gcd-dividable n m))) * (Dividable.factor (NonPrime.dividable cc)) - ; is-factor = {!!} } } -- cc : NonPrime (gcd n m ) + ; is-factor = begin + Dividable.factor (proj1 (gcd-dividable n m)) * Dividable.factor (NonPrime.dividable cc) * NonPrime.factor cc + 0 ≡⟨ refl ⟩ + g * d * p + 0 ≡⟨ +-comm _ 0 ⟩ + g * d * p ≡⟨ *-assoc g d p ⟩ + g * (d * p) ≡⟨ cong (λ k → g * k ) (+-comm 0 _) ⟩ + g * (d * p + 0) ≡⟨ cong (λ k → g * k ) (Dividable.is-factor (NonPrime.dividable cc) ) ⟩ + g * gcd n m ≡⟨ +-comm 0 _ ⟩ + g * gcd n m + 0 ≡⟨ Dividable.is-factor (proj1 (gcd-dividable n m)) ⟩ + n ∎ }} where + open ≡-Reasoning + g = Dividable.factor (proj1 (gcd-dividable n m)) + d = Dividable.factor (NonPrime.dividable cc) + p = NonPrime.factor cc + np2 : NonPrime n + np2 with <-cmp (gcd n m) m + ... | tri< a ¬b ¬c = skip-case (np1 (gcd n m) m ngcd c (skipFactor (gcd n m) a )) + ... | tri≈ ¬a b ¬c = skip-case (np1 (gcd n m) m ngcd c + (subst (λ k → Factoring m k) (sym b) (findFactor m ≤-refl (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n) )))) + ... | tri> ¬a ¬b' c with <-cmp 0 m + ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> (gcd-≥ m n a (≤-trans refl-≤s m≤n)) c ) + ... | tri≈ ¬a' b' ¬c = ⊥-elim ( np record { isPrime = λ j lt 0<j → mg j (subst (λ k → k < j) b' 0<j) lt ; p>1 = 1<n } ) -- suc m ≤ j np1 n zero np 1<n (skipFactor n ()) np1 n (suc m) np 1<n (skipFactor n n<m) with <-cmp m n ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a n<m) - ... | tri> ¬a ¬b c = np1 n m np 1<n (skipFactor n c) - ... | tri≈ ¬a refl ¬c with np1 n m np 1<n (findFactor m (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n) )) - ... | np2 = np1 n m np 1<n (findFactor m (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n))) + ... | tri> ¬a ¬b c = np1 n m np 1<n (skipFactor n c) + ... | tri≈ ¬a refl ¬c = np1 n m np 1<n (findFactor m ≤-refl (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n) )) prime-is-infinite : (max-prime : ℕ ) → ¬ ( (j : ℕ) → max-prime < j → ¬ Prime j )