Mercurial > hg > Members > kono > Proof > automaton
changeset 297:afc7db9b917d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 31 Dec 2021 15:42:27 +0900 |
parents | 2f113cac060b |
children | 1b5c09f12373 |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 17 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Fri Dec 31 14:36:44 2021 +0900 +++ b/automaton-in-agda/src/non-regular.agda Fri Dec 31 15:42:27 2021 +0900 @@ -122,17 +122,25 @@ make-TA {Q} {Σ} fa finq q qd is tr dup = tra-phase1 q is tr dup where open TA tra-phase2 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase2 finq qd (tr→qs fa is q tr) ≡ true → TA fa 1 q qd - tra-phase2 q (i ∷ is) (tnext q tr) p with equal? finq qd q - ... | true = {!!} - ... | false = {!!} + tra-phase2 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect ( equal? finq qd) q + ... | true | record { eq = eq } = {!!} + ... | false | record { eq = eq } = {!!} tra-phase1 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase1 finq qd (tr→qs fa is q tr) ≡ true → TA fa 0 q qd - tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q - ... | true = record { x = [] ; y = y TA0 ; z = z TA0 ; trace-z = λ () ; trace-yz = λ _ → trace-yz TA0 a<sa - ; trace-xyz = λ _ → subst (λ k → Trace fa (y TA0 ++ z TA0) k ) {!!} (trace-yz TA0 a<sa) - ; trace-xyyz = λ _ → {!!}} where - TA0 : {!!} + tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect (equal? finq qd) q + ... | true | record { eq = eq } = record { x = [] ; y = y TA0 ; z = z TA0 ; trace-z = λ () ; trace-yz = λ _ → trace-yz TA0 a<sa + ; trace-xyz = λ _ → subst (λ k → Trace fa (y TA0 ++ z TA0) k ) (equal→refl finq eq) (trace-yz TA0 a<sa) + ; trace-xyyz = λ _ → subst (λ k → Trace fa (y TA0 ++ y TA0 ++ z TA0) k ) (equal→refl finq eq) (tra-01 (y TA0) (trace-yz TA0 a<sa)) } where + TA0 : TA fa 1 (δ fa q i ) qd TA0 = tra-phase2 (δ fa q i ) is tr p - ... | false = record { x = i ∷ x TA0 ; y = y TA0 ; z = z TA0 ; trace-z = λ () ; trace-yz = λ () + tra-02 : (y1 : List Σ) → (q : Q) → (tr : Trace fa (y1 ++ z TA0) q) + → phase2 finq qd (tr→qs fa (y1 ++ z TA0) q tr) ≡ true → Trace fa (y1 ++ y TA0 ++ z TA0) q + tra-02 [] q tr p with equal? finq qd q | inspect ( equal? finq qd) q + ... | true | record { eq = eq } = subst (λ k → Trace fa (y TA0 ++ z TA0) k ) (equal→refl finq eq) (trace-yz TA0 a<sa ) + ... | false | record { eq = eq } = {!!} + tra-02 (y1 ∷ ys) q (tnext q tr) p = tnext q (tra-02 ys (δ fa q y1) tr {!!} ) + tra-01 : (y1 : List Σ) → Trace fa (y1 ++ z TA0) qd → Trace fa (y1 ++ y TA0 ++ z TA0) qd + tra-01 = {!!} + ... | false | _ = record { x = i ∷ x TA0 ; y = y TA0 ; z = z TA0 ; trace-z = λ () ; trace-yz = λ () ; trace-xyz = λ _ → tnext q (trace-xyz TA0 refl ) ; trace-xyyz = λ _ → tnext q (trace-xyyz TA0 refl )} where TA0 : TA fa 0 (δ fa q i ) qd TA0 = tra-phase1 (δ fa q i ) is tr p