Mercurial > hg > Members > kono > Proof > automaton
changeset 304:b0a88e024188
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jan 2022 12:27:39 +0900 (2022-01-01) |
parents | 5261402429f9 |
children | 5ef7ad34a05f |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 54 insertions(+), 54 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Sat Jan 01 11:00:41 2022 +0900 +++ b/automaton-in-agda/src/non-regular.agda Sat Jan 01 12:27:39 2022 +0900 @@ -118,6 +118,7 @@ xyz=is : x ++ y ++ z ≡ is trace-xyz : Trace fa (x ++ y ++ z) q trace-xyyz : Trace fa (x ++ y ++ y ++ z) q + non-nil-y : ¬ (y ≡ []) open import nat @@ -140,6 +141,7 @@ tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect (equal? finq qd) q | phase1 finq qd (tr→qs fa is (δ fa q i) tr) | inspect ( phase1 finq qd) (tr→qs fa is (δ fa q i) tr) ... | true | record { eq = eq } | false | record { eq = np} = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta) + ; non-nil-y = λ () ; trace-xyz = tnext q (TA1.trace-yz ta) ; trace-xyyz = tra-02 (i ∷ TA1.y ta) (TA1.z ta) q (tnext q (TA1.trace-yz ta)) (subst (λ k → Trace fa (TA1.z ta) k) {!!} (TA1.trace-z ta)) {!!} {!!} } where @@ -166,10 +168,12 @@ ... | true | record { eq = eq } = {!!} -- y2 + z1 contains two qd ... | false | record { eq = ne } = tnext q (tra-04 y2 (δ fa q y0) tr qs zqs {!!} {!!} np2 ) ... | true | record { eq = eq } | true | record { eq = np} = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) + ; non-nil-y = non-nil-y ta ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where ta : TA fa (δ fa q i ) is ta = tra-phase1 (δ fa q i ) is tr np ... | false | _ | _ | _ = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) + ; non-nil-y = non-nil-y ta ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where ta : TA fa (δ fa q i ) is ta = tra-phase1 (δ fa q i ) is tr p @@ -189,18 +193,12 @@ ... | t = {!!} nn03 : accept (automaton r) (astart r) nn ≡ true nn03 = subst (λ k → k ≡ true ) (Rg nn ) (nn01 n) - count : In2 → List In2 → ℕ - count _ [] = 0 - count i0 (i0 ∷ s) = suc (count i0 s) - count i1 (i1 ∷ s) = suc (count i1 s) - count x (_ ∷ s) = count x s - nn10 : (s : List In2) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s - nn10 = {!!} - nn11 : {x : In2} → (s t : List In2) → count x (s ++ t) ≡ count x s + count x t - nn11 = {!!} - nntrace = trace (automaton r) (astart r) nn + nn09 : (n m : ℕ) → n ≤ n + m + nn09 zero m = z≤n + nn09 (suc n) m = s≤s (nn09 n m) nn04 : Trace (automaton r) nn (astart r) nn04 = tr-accept← (automaton r) nn (astart r) nn03 + nntrace = trace (automaton r) (astart r) nn nn07 : (n : ℕ) → length (inputnn0 n i0 i1 []) ≡ n + n nn07 n = subst (λ k → length (inputnn0 n i0 i1 []) ≡ k) (+-comm (n + n) _ ) (nn08 n [] )where nn08 : (n : ℕ) → (s : List In2) → length (inputnn0 n i0 i1 s) ≡ n + n + length s @@ -213,9 +211,6 @@ suc n + ((n + 1) + length s) ≡⟨ cong (λ k → suc n + (k + length s)) (+-comm n _) ⟩ suc n + (suc n + length s) ≡⟨ sym (+-assoc (suc n) _ _) ⟩ suc n + suc n + length s ∎ where open ≡-Reasoning - nn09 : (n m : ℕ) → n ≤ n + m - nn09 zero m = z≤n - nn09 (suc n) m = s≤s (nn09 n m) nn05 : length nntrace > finite (afin r) nn05 = begin suc (finite (afin r)) ≤⟨ nn09 _ _ ⟩ @@ -223,44 +218,49 @@ length (inputnn0 n i0 i1 []) ≤⟨ refl-≤s ⟩ {!!} ≤⟨ {!!} ⟩ length nntrace ∎ where open ≤-Reasoning - nn02 : {!!} -- TA (automaton r) {!!} {!!} {!!} - nn02 = {!!} where -- make-TA (automaton r) (afin r) (Dup-in-list.dup nn06) _ _ (Dup-in-list.is-dup nn06) ? where - nn06 : Dup-in-list ( afin r) nntrace - nn06 = dup-in-list>n (afin r) nntrace nn05 - nn12 : (x y z : List In2) - → ¬ y ≡ [] - → accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true) - nn12 x y z p q = {!!} where - mono-color : List In2 → Bool - mono-color [] = true - mono-color (i0 ∷ s) = mono-color0 s where - mono-color0 : List In2 → Bool - mono-color0 [] = true - mono-color0 (i1 ∷ s) = false - mono-color0 (i0 ∷ s) = mono-color0 s - mono-color (i1 ∷ s) = mono-color1 s where - mono-color1 : List In2 → Bool - mono-color1 [] = true - mono-color1 (i0 ∷ s) = false - mono-color1 (i1 ∷ s) = mono-color1 s - mono-color (i1 ∷ s) = {!!} - i1-i0? : List In2 → Bool - i1-i0? [] = false - i1-i0? (i1 ∷ []) = false - i1-i0? (i0 ∷ []) = false - i1-i0? (i1 ∷ i0 ∷ s) = true - i1-i0? (_ ∷ s0 ∷ s1) = i1-i0? (s0 ∷ s1) - nn13 : mono-color y ≡ true → count i0 (x ++ y ++ z) ≡ count i1 (x ++ y ++ z) → - ¬ ( count i0 (x ++ y ++ y ++ z) ≡ count i1 (x ++ y ++ y ++ z) ) - nn13 = {!!} - nn16 : (s : List In2 ) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s - nn16 = {!!} - nn15 : (s : List In2 ) → i1-i0? s ≡ true → accept (automaton r) (astart r) s ≡ false - nn15 = {!!} - nn14 : mono-color y ≡ false → i1-i0? (x ++ y ++ y ++ z) ≡ true - nn14 = {!!} - nn17 : accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true) - nn17 p q with mono-color y | inspect mono-color y - ... | true | record { eq = eq } = {!!} - ... | false | record { eq = eq } = {!!} -- q ( nn15 (x ++ y ++ z) (nn14 eq)) - + nn06 : Dup-in-list ( afin r) nntrace + nn06 = dup-in-list>n (afin r) nntrace nn05 + TAnn : TA (automaton r) (astart r) nn + TAnn = make-TA (automaton r) (afin r) (astart r) {!!} nn {!!} {!!} + count : In2 → List In2 → ℕ + count _ [] = 0 + count i0 (i0 ∷ s) = suc (count i0 s) + count i1 (i1 ∷ s) = suc (count i1 s) + count x (_ ∷ s) = count x s + nn11 : {x : In2} → (s t : List In2) → count x (s ++ t) ≡ count x s + count x t + nn11 = {!!} + nn10 : (s : List In2) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s + nn10 = {!!} + i1-i0? : List In2 → Bool + i1-i0? [] = false + i1-i0? (i1 ∷ []) = false + i1-i0? (i0 ∷ []) = false + i1-i0? (i1 ∷ i0 ∷ s) = true + i1-i0? (_ ∷ s0 ∷ s1) = i1-i0? (s0 ∷ s1) + nn20 : {s s0 s1 : List In2} → accept (automaton r) (astart r) s ≡ true → ¬ ( s ≡ s0 ++ i1 ∷ i0 ∷ s1 ) + nn20 = {!!} + mono-color : List In2 → Bool + mono-color [] = true + mono-color (i0 ∷ s) = mono-color0 s where + mono-color0 : List In2 → Bool + mono-color0 [] = true + mono-color0 (i1 ∷ s) = false + mono-color0 (i0 ∷ s) = mono-color0 s + mono-color (i1 ∷ s) = mono-color1 s where + mono-color1 : List In2 → Bool + mono-color1 [] = true + mono-color1 (i0 ∷ s) = false + mono-color1 (i1 ∷ s) = mono-color1 s + record Is10 (s : List In2) : Set where + field + s0 s1 : List In2 + is-10 : s ≡ s0 ++ i1 ∷ i0 ∷ s1 + not-mono : { s : List In2 } → ¬ (mono-color s ≡ true) → Is10 (s ++ s) + not-mono = {!!} + mono-count : { s : List In2 } → mono-color s ≡ true → (length s ≡ count i0 s) ∨ ( length s ≡ count i1 s) + mono-count = {!!} + tann : {x y z : List In2} → ¬ y ≡ [] → accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true ) + tann {x} {y} {z} ny axyz axyyz with mono-color y + ... | true = {!!} + ... | false = {!!} +