Mercurial > hg > Members > kono > Proof > automaton
changeset 340:b818fbd86d0b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Jul 2023 14:28:39 +0900 |
parents | 40f7b6c3d276 |
children | 9120a5872a5b |
files | automaton-in-agda/src/derive.agda |
diffstat | 1 files changed, 9 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/derive.agda Mon Jul 10 14:07:36 2023 +0900 +++ b/automaton-in-agda/src/derive.agda Mon Jul 10 14:28:39 2023 +0900 @@ -120,13 +120,15 @@ injSB : (r : Regex Σ) → InjectiveF (Derivative r) (SB r (rank r) → Bool) injSB r = record { f = fb01 (rank r) r refl ; inject = ? } where fb01 : (n : ℕ ) → (r : Regex Σ) → rank r ≡ n → Derivative r → SB r (rank r) → Bool - fb01 zero .ε eq d (sbε r) = true - fb01 zero .φ eq d (sbφ r) = false - fb01 zero .(< s >) eq d (sb<> s) = ? - fb01 zero .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) = ? - fb01 (suc n) .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) = ? - fb01 (suc n) .(x & (x *)) eq d (sb* x .(max (rank x) (rank (x *)))) = ? - fb01 (suc n) .(x & y) eq d (sb& x y xn .(max (rank x) (rank y)) x₁) = ? + fb01 n r eq d sb with is-derived d + fb01 n r eq d sb | unit = true + fb01 zero .ε eq d (sbε r) | derive {y} ss i = true + fb01 zero .φ eq d (sbφ r) | derive {y} ss i = false + fb01 zero .(< s >) eq d (sb<> s) | derive {y} ss i = ? + fb01 zero .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) | derive {y₂} ss i = ? + fb01 (suc n) .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) | derive {y₂} ss i = ? + fb01 (suc n) .(x & (x *)) eq d (sb* x .(max (rank x) (rank (x *)))) | derive {y₂} ss i = ? + fb01 (suc n) .(x & y) eq d (sb& x y xn .(max (rank x) (rank y)) x₁) | derive {y₂} ss i = ? finite-derivative : (r : Regex Σ) → FiniteSet (Derivative r) finite-derivative r = inject-fin (finSBTA r) (injSB r) ?