Mercurial > hg > Members > kono > Proof > automaton
changeset 361:c66d664593e9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 18 Jul 2023 19:21:51 +0900 |
parents | 6ba2836177b4 |
children | 6d5344d3be9c |
files | automaton-in-agda/src/finiteSetUtil.agda |
diffstat | 1 files changed, 15 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/finiteSetUtil.agda Tue Jul 18 18:54:46 2023 +0900 +++ b/automaton-in-agda/src/finiteSetUtil.agda Tue Jul 18 19:21:51 2023 +0900 @@ -700,12 +700,26 @@ cb00 : (n : ℕ) → n < count-B (finite fa) → CountB n cb00 n n<cb = lem09 (finite fa) (count-B (finite fa)) (<-transˡ a<sa n<cb) refl where + lem06 : (i j : ℕ) → (i<fa : i < finite fa) (j<fa : j < finite fa) + → Is B A f (Q←F fa (fromℕ< i<fa)) → Is B A f (Q←F fa (fromℕ< j<fa)) → count-B i ≡ count-B j → i ≡ j + lem06 i j i<fa j<fa bi bj eq = ? where + lem20 : (i j : ℕ) → i < j → (i<fa : i < finite fa) (j<fa : j < finite fa) + → Is B A f (Q←F fa (fromℕ< i<fa)) → Is B A f (Q←F fa (fromℕ< j<fa)) → count-B j ≡ count-B i → ⊥ + lem20 zero (suc j) i<j bi bj le = ? + lem20 (suc i) zero () bi bj le + lem20 (suc i) (suc j) (s≤s i<j) bi bj le = ? + lem08 : i ≡ j + lem08 with <-cmp i j + ... | tri< a ¬b ¬c = ⊥-elim ( lem20 i j a ? ? bi bj (sym eq) ) + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c₁ = ⊥-elim ( lem20 j i c₁ ? ? bj bi eq ) + lem09 : (i j : ℕ) → suc n ≤ j → j ≡ count-B i → CountB n lem09 0 (suc j) (s≤s le) eq with is-B (Q←F fa (fromℕ< {0} 0<fa )) | inspect count-B 0 ... | no nisb | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) ... | yes isb | record { eq = eq1 } with ≤-∨ (s≤s le) ... | case1 eq2 = record { b = Is.a isb ; cb = 0 ; b=cn = lem10 ; cb=n = trans eq1 (sym (trans eq2 eq)) - ; cb-inject = λ cb1 iscb1 cb1eq → ?} where + ; cb-inject = ? } where lem10 : 0 ≡ toℕ (F←Q fa (f (Is.a isb))) lem10 = begin 0 ≡⟨ sym ( toℕ-fromℕ< 0<fa ) ⟩