Mercurial > hg > Members > kono > Proof > automaton
changeset 89:e919e82e95a2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 Nov 2019 12:21:44 +0900 |
parents | e7b3a2856ccb |
children | cefa1fa3ee08 |
files | agda/regular-language.agda |
diffstat | 1 files changed, 8 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/regular-language.agda Sun Nov 10 10:55:25 2019 +0900 +++ b/agda/regular-language.agda Sun Nov 10 12:21:44 2019 +0900 @@ -123,10 +123,6 @@ nend (case2 q) = aend (automaton B) q nend (case1 q) = aend (automaton A) q /\ aend (automaton B) (astart B) -- empty B case --- Concat-NFA-start : {Σ : Set} → (A B : RegularLanguage Σ ) → states A ∨ states B → Bool --- Concat-NFA-start A B (case1 q) = equal? (afin A) q (astart A) --- Concat-NFA-start _ _ _ = false - Concat-NFA-start : {Σ : Set} → (A B : RegularLanguage Σ ) → states A ∨ states B → Bool Concat-NFA-start A B q = equal? (fin-∨ (afin A) (afin B)) (case1 (astart A)) q @@ -237,6 +233,7 @@ -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n n -- (Level.suc n) already in finiteSet open NAutomaton +open import Data.List.Properties closed-in-concat : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Concat (contain A) (contain B)) x ( M-Concat A B ) closed-in-concat {Σ} A B x = ≡-Bool-func closed-in-concat→ closed-in-concat← where @@ -284,10 +281,13 @@ true ∎ where open ≡-Reasoning - lemma11 : (x y : List Σ) → (q : states A) → (nq : states A ∨ states B → Bool ) → (nq (case1 q) ≡ true) - → split (contain A) (contain B) (x ++ y) ≡ true - lemma11 x [] q nq nqt = {!!} - lemma11 x (h ∷ t) q nq nqt = {!!} + lemma11 : (x y : List Σ) → {z : List Σ} → x ++ y ≡ z → (q : states A) → (nq : states A ∨ states B → Bool ) → (nq (case1 q) ≡ true) + → Naccept NFA finab nq z ≡ true → split (contain A) (contain B) z ≡ true + lemma11 x [] refl q nq nqt CC = {!!} + lemma11 [] (hz ∷ t) {z} refl q nq nqt CC = + lemma11 ([] ++ [ hz ] ) t {z} refl {!!} {!!} {!!} {!!} + lemma11 (h ∷ t) (hz ∷ tz) {z} refl q nq nqt CC = + lemma11 ((h ∷ t) ++ [ hz ] ) tz {z} (++-assoc (h ∷ t) _ _) {!!} {!!} {!!} {!!} lemma10 : Naccept NFA finab (equal? finab (case1 (astart A))) x ≡ true → split (contain A) (contain B) x ≡ true lemma10 = {!!}