Mercurial > hg > Members > kono > Proof > automaton1
changeset 7:8f1828ec8d1b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Nov 2020 19:10:03 +0900 |
parents | c42493f74570 |
children | 894feefc3084 |
files | nfa.agda |
diffstat | 1 files changed, 49 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/nfa.agda Sat Nov 14 18:05:41 2020 +0900 +++ b/nfa.agda Sat Nov 14 19:10:03 2020 +0900 @@ -69,39 +69,65 @@ decs136 q₂ = no (λ ()) decs136 q₃ = no (λ ()) +dect136 : (x : Σ2) → (nq q : Q3) → Dec (Nδ nfa136 nq x q) +dect136 s0 q₁ q₁ = yes d1 +dect136 s0 q₁ q₂ = no (λ ()) +dect136 s0 q₁ q₃ = no (λ ()) +dect136 s0 q₂ q₁ = no (λ ()) +dect136 s0 q₂ q₂ = yes d2 +dect136 s0 q₂ q₃ = yes d3 +dect136 s0 q₃ q₁ = yes d5 +dect136 s0 q₃ q₂ = no (λ ()) +dect136 s0 q₃ q₃ = no (λ ()) +dect136 s1 q₁ q₁ = no (λ ()) +dect136 s1 q₁ q₂ = yes d0 +dect136 s1 q₁ q₃ = no (λ ()) +dect136 s1 q₂ q₁ = no (λ ()) +dect136 s1 q₂ q₂ = no (λ ()) +dect136 s1 q₂ q₃ = yes d4 +dect136 s1 q₃ q₁ = no (λ ()) +dect136 s1 q₃ q₂ = no (λ ()) +dect136 s1 q₃ q₃ = no (λ ()) + open import Data.Empty open import Relation.Nullary open _∧_ -p136→ : (qs : Q3 → Set) → exists-in-Q3 (λ nq → qs nq ) → qs q₁ ∨ qs q₂ ∨ qs q₃ -p136→ qs (qe1 a) = case1 a -p136→ qs (qe2 a) = case2 (case1 a) -p136→ qs (qe3 a) = case2 (case2 a) - -p136← : (qs : Q3 → Set) → qs q₁ ∨ qs q₂ ∨ qs q₃ → exists-in-Q3 (λ nq → qs nq ) -p136← qs (case1 a) = qe1 a -p136← qs (case2 (case1 a)) = qe2 a -p136← qs (case2 (case2 a)) = qe3 a - next136 : (qs : Q3 → Set) → ((q : Q3) → Dec (qs q)) → (x : Σ2) (q : Q3) → Dec (exists-in-Q3 (λ nq → qs nq ∧ Nδ nfa136 nq x q)) -next136 qs dec x q = {!!} where - ne1 : (q : Q3) → (x : Σ2) → Dec (qs q₁) → Dec (qs q₁ ∧ Nδ nfa136 q₁ x q) - ne1 q x ( no n) = no ( λ not → n (proj1 not)) - ne1 q₁ s0 (yes y) = yes [ y , d1 ] - ne1 q₁ s1 (yes y) = no (λ not → ne11 (proj2 not)) where - ne11 : ¬ Nδ nfa136 q₁ s1 q₁ - ne11 () - ne1 q₂ s0 (yes y) = no (λ not → ne12 (proj2 not)) where - ne12 : ¬ Nδ nfa136 q₁ s0 q₂ - ne12 () - ne1 q₂ s1 (yes y) = yes [ y , d0 ] - ne1 q₃ s0 (yes y) = {!!} - ne1 q₃ s1 (yes y) = {!!} +next136 qs dec x q = ne0 where + ne1 : (q : Q3) → (x : Σ2) → Dec (qs q₁) → Dec (Nδ nfa136 q₁ x q) → Dec (qs q₁ ∧ Nδ nfa136 q₁ x q) + ne1 q x (no n) _ = no (λ not → n (proj1 not)) + ne1 q x _ (no n) = no (λ not → n (proj2 not)) + ne1 q x (yes y0) (yes y1) = yes [ y0 , y1 ] + ne2 : (q : Q3) → (x : Σ2) → Dec (qs q₂) → Dec (Nδ nfa136 q₂ x q) → Dec (qs q₂ ∧ Nδ nfa136 q₂ x q) + ne2 q x (no n) _ = no (λ not → n (proj1 not)) + ne2 q x _ (no n) = no (λ not → n (proj2 not)) + ne2 q x (yes y0) (yes y1) = yes [ y0 , y1 ] + ne3 : (q : Q3) → (x : Σ2) → Dec (qs q₃) → Dec (Nδ nfa136 q₃ x q) → Dec (qs q₃ ∧ Nδ nfa136 q₃ x q) + ne3 q x (no n) _ = no (λ not → n (proj1 not)) + ne3 q x _ (no n) = no (λ not → n (proj2 not)) + ne3 q x (yes y0) (yes y1) = yes [ y0 , y1 ] + ne0 : Dec (exists-in-Q3 (λ nq → qs nq ∧ Nδ nfa136 nq x q)) + ne0 with ne1 q x (dec q₁) (dect136 x q₁ q) + ... | yes y = yes ( qe1 y) + ... | no n with ne2 q x (dec q₂) (dect136 x q₂ q) + ... | yes y2 = yes (qe2 y2) + ... | no n2 with ne3 q x (dec q₃) (dect136 x q₃ q) + ... | yes y3 = yes (qe3 y3) + ... | no n3 = no ne4 where + ne4 : ¬ exists-in-Q3 (λ nq → qs nq ∧ transition136 nq x q) + ne4 (qe1 x) = n x + ne4 (qe2 x) = n2 x + ne4 (qe3 x) = n3 x nfa136trace : (input : List Σ2 ) → naccept exists-in-Q3 nfa136 start136 input → List (List Q3) nfa136trace x a = ntrace exists-in-Q3 nfa136 start136 x a decs136 next136 Q3List +postulate + nfa13rs1 : example136-1 +nfa13rt1 = nfa136trace ( s0 ∷ s1 ∷ s0 ∷ s0 ∷ [] ) nfa13rs1 + subset-construction : {n : Level} { Q : Set n } { Σ : Set } → (Nexists : (Q → Set) → Set) → (NAutomaton Q Σ ) → Automaton {Suc Zero ⊔ n} (Q → Set) Σ subset-construction {n} {Q} { Σ} Nexists nfa = record {