463
|
1 \documentclass{jarticle}
|
|
2 \usepackage[dvipdfm]{graphicx}
|
|
3 \usepackage{tikz}
|
|
4 \usepackage{tikz-cd}
|
|
5 \usetikzlibrary{matrix,arrows,decorations.pathmorphing}
|
|
6 \usetikzlibrary{positioning}
|
|
7 \usepackage{amsmath}
|
|
8
|
|
9 \begin{document}
|
|
10
|
|
11 \date{}
|
|
12 \title{{\bf Commutative Diagram Exmamples}}
|
|
13 \author{}
|
|
14
|
|
15 The tikz package
|
|
16 This is a general purpose graphics package. To load it for this document, I used:
|
|
17
|
|
18
|
|
19 There are now three ways to enter commutative diagrams using tikz: with the package tikz-cd, with matrix, and directly with tikz (listed roughly in order of decreasing ease but increasing flexibility).
|
|
20
|
|
21 \begin{tikzcd}
|
|
22 A \arrow{r}{a} \arrow{d}{b}
|
|
23 &B \arrow{d}{c}\\
|
|
24 C \arrow{r}{d} &D
|
|
25 \end{tikzcd}
|
|
26
|
|
27 \begin{tikzpicture}
|
|
28 \matrix(m)[matrix of math nodes, row sep=2.6em, column sep=2.8em, text height=1.5ex, text depth=0.25ex]
|
|
29 {A & B \\
|
|
30 C & D \\ };
|
|
31 \path[->,font=\scriptsize,>=angle 90]
|
|
32 (m-1-1) edge node[auto] {$a$} (m-1-2)
|
|
33 edge node[auto] {$b$} (m-2-1)
|
|
34 (m-1-2) edge node[auto] {$c$} (m-2-2)
|
|
35 (m-2-1) edge node[auto] {$d$} (m-2-2);
|
|
36 \end{tikzpicture}
|
|
37
|
|
38 \begin{tikzpicture}[scale=1.5]
|
|
39 \node (A) at (0,1) {$A$};
|
|
40 \node (B) at (1,1) {$B$};
|
|
41 \node (C) at (0,0) {$C$};
|
|
42 \node (D) at (1,0) {$D$};
|
|
43 \path[->,font=\scriptsize,>=angle 90]
|
|
44 (A) edge node[above]{$a$} (B)
|
|
45 (A) edge node[right]{$b$} (C)
|
|
46 (B) edge node[right]{$c$} (D)
|
|
47 (C) edge node[above]{$d$} (D);
|
|
48 \end{tikzpicture}
|
|
49
|
|
50
|
|
51 This is part of: Guide to Commutative Diagrams, www.jmilne.org/not/CDGuide.html Last revised October 30, 2012
|
|
52
|
|
53 \begin{tikzcd}
|
|
54 ABC A \arrow[hook]{r}\arrow[two heads]{rd}
|
|
55 &B \arrow[dotted]{d}\arrow[hookleftarrow]{r}
|
|
56 &C \arrow[two heads]{ld}\\ D &D
|
|
57 \end{tikzcd}
|
|
58
|
|
59
|
|
60 \begin{tikzcd}
|
|
61 A \arrow[hook]{r}{u}[swap]{b}
|
|
62 Aub Bub C \arrow[two heads]{rd}{u}[swap]{b}
|
|
63 &B \arrow[dotted]{d}{r}[swap]{l}
|
|
64 \arrow[hookleftarrow]{r}{u}[swap]{b}
|
|
65 D &C \arrow[two heads]{ld}{b}[swap]{u}\\ &D
|
|
66 \end{tikzcd}
|
|
67
|
|
68 \begin{tikzcd}
|
|
69 A\arrow{r}\arrow{d}
|
|
70 &B\arrow{r}{\text{very long label}}\arrow{d}
|
|
71 &C\arrow{d}\\
|
|
72 DEF D\arrow{r}&E\arrow{r}&F
|
|
73 \end{tikzcd}
|
|
74
|
|
75 % \begin{tikzcd}[column sep=large]
|
|
76 % A\arrow{r}\arrow{d}
|
|
77
|
|
78
|
|
79 \begin{tikzcd}
|
|
80 A B A\arrow[bend left]{r}\arrow[bend right]{r}&B
|
|
81 \end{tikzcd}
|
|
82
|
|
83 \begin{tikzcd}
|
|
84 &A\arrow{ldd}[swap]{f}\arrow{rd}[description]{c}
|
|
85 \arrow{rrd}[description]{d}
|
|
86 \arrow{rrrd}[description]{e}\\
|
|
87 &B\arrow{ld}\arrow{r}&C\arrow{r}&D\arrow{r}&E\\
|
|
88 F
|
|
89 \end{tikzcd}
|
|
90
|
|
91 \begin{tikzcd}
|
|
92 T\arrow[bend left]{drr}{x}
|
|
93 \arrow[bend right]{ddr}[swap]{y}
|
|
94 \arrow[dotted]{dr}[description]{(x,y)} & & \\
|
|
95 & X \times_Z Y \arrow{r}{p} \arrow{d}{q} & X \arrow{d}{f} \\
|
|
96 & Y \arrow{r}{g} & Z
|
|
97 \end{tikzcd}
|
|
98
|
|
99 \begin{tikzpicture}[>=angle 90]
|
|
100 \matrix(a)[matrix of math nodes,
|
|
101 row sep=3em, column sep=2.5em,
|
|
102 text height=1.5ex, text depth=0.25ex]
|
|
103 {A&B&C\\
|
|
104 &D\\};
|
|
105 \path[right hook->](a-1-1) edge (a-1-2);
|
|
106 \path[->>](a-1-1) edge (a-2-2);
|
|
107 \path[dotted,->](a-1-2) edge (a-2-2);
|
|
108 \path[left hook->](a-1-3) edge (a-1-2);
|
|
109 \path[->>](a-1-3) edge (a-2-2);
|
|
110 \end{tikzpicture}
|
|
111
|
|
112
|
|
113
|
|
114 \begin{tikzpicture}
|
|
115 \matrix(m)[matrix of math nodes,
|
|
116 row sep=3em, column sep=2.8em,
|
|
117 text height=1.5ex, text depth=0.25ex]
|
|
118 {A&B\\};
|
|
119 \path[->]
|
|
120 (m-1-1) edge [bend left] (m-1-2)
|
|
121 edge [bend left=40] (m-1-2)
|
|
122 edge [bend left=60] (m-1-2)
|
|
123 edge [bend left=80] (m-1-2)
|
|
124 edge [bend right] (m-1-2);
|
|
125 \end{tikzpicture}
|
|
126
|
|
127 \[
|
|
128 \begin{tikzpicture}[descr/.style={fill=white}]
|
|
129 \matrix(m)[matrix of math nodes, row sep=3em, column sep=2.8em, text height=1.5ex, text depth=0.25ex]
|
|
130 {&A\\&B&C&D&E\\F\\};
|
|
131 \path[->,font=\scriptsize]
|
|
132 (m-1-2) edge node[above left] {$f$} (m-3-1)
|
|
133 edge node[descr] {$c$} (m-2-3)
|
|
134 edge node[descr] {$d$} (m-2-4)
|
|
135 edge node[descr] {$e$} (m-2-5);
|
|
136 \path[->]
|
|
137 (m-2-2) edge (m-3-1)
|
|
138 edge (m-2-3);
|
|
139 \path[->]
|
|
140 (m-2-3) edge (m-2-4);
|
|
141 \path[->]
|
|
142 (m-2-4) edge (m-2-5);
|
|
143 \end{tikzpicture}
|
|
144 \]
|
|
145
|
|
146 \[
|
|
147 \begin{tikzpicture}[descr/.style={fill=white}]
|
|
148 \matrix(m)[matrix of math nodes, row sep=3em, column sep=2.8em,
|
|
149 text height=1.5ex, text depth=0.25ex]
|
|
150 {T\\&X\times_Z Y&X\\&Y&Z\\};
|
|
151 7
|
|
152
|
|
153 \path[->,font=\scriptsize]
|
|
154 (m-1-1) edge [bend left=10] node[above] {$x$} (m-2-3)
|
|
155 (m-1-1) edge [bend right=10] node[below] {$y$} (m-3-2);
|
|
156 \path[->,dotted,font=\scriptsize]
|
|
157 (m-1-1) edge node[descr] {$(x,y)$} (m-2-2);
|
|
158 \path[->,font=\scriptsize]
|
|
159 (m-2-2) edge node[below] {$p$} (m-2-3)
|
|
160 (m-2-2) edge node[right] {$q$} (m-3-2);
|
|
161 \path[->,font=\scriptsize]
|
|
162 (m-2-3) edge node[right] {$f$} (m-3-3);
|
|
163 \path[->,font=\scriptsize]
|
|
164 (m-3-2) edge node[above] {$g$} (m-3-3);
|
|
165 \end{tikzpicture}
|
|
166 \]
|
|
167
|
|
168 \begin{tikzpicture}
|
|
169 \node (A) at (-1,0) {$A$};
|
|
170 \node (B) at (1,0) {$B$};
|
|
171 \node at (0,0) {\rotatebox{270}{$\Rightarrow$}};
|
|
172 \path[->,font=\scriptsize,>=angle 90]
|
|
173 (A) edge [bend left] node[above] {$\alpha$} (B)
|
|
174 edge [bend right] node[below] {$\beta$} (B);
|
|
175 \end{tikzpicture}
|
|
176
|
|
177 \begin{tikzpicture}
|
|
178 \node (P0) at (90:2.8cm) {$X\otimes (Y\otimes (Z\otimes T))$};
|
|
179 \node (P1) at (90+72:2.5cm) {$X\otimes ((Y\otimes Z)\otimes T))$} ;
|
|
180 \node (P2) at (90+2*72:2.5cm) {${(X\otimes (Y\otimes Z))}\otimes T$};
|
|
181 \node (P3) at (90+3*72:2.5cm) {$((X\otimes Y){\otimes Z)\otimes T}$};
|
|
182 \node (P4) at (90+4*72:2.5cm) {$(X\otimes Y)\otimes (Z\otimes T)$};
|
|
183 \draw
|
|
184 (P0) edge[->,>=angle 90] node[left] {$1\otimes\phi$} (P1)
|
|
185 (P1) edge[->,>=angle 90] node[left] {$\phi$} (P2)
|
|
186 (P2) edge[->,>=angle 90] node[above] {$\phi\otimes 1$} (P3)
|
|
187 (P4) edge[->,>=angle 90] node[right] {$\phi$} (P3)
|
|
188 (P0) edge[->,>=angle 90] node[right] {$\phi$} (P4);
|
|
189 \end{tikzpicture}
|
|
190
|
|
191
|
|
192 \begin{tikzpicture}
|
|
193 \node (a) at (0,0) {$Y\times_X Y$};
|
|
194 \node (b) at (2,0) {$Y$};
|
|
195 \node (c) at (3.5,0) {$X$};
|
|
196 \path[->,font=\scriptsize,>=angle 90]
|
|
197 ([yshift= 2pt]a.east) edge node[above] {$p_1$} ([yshift= 2pt]b.west)
|
|
198 ([yshift= -2pt]a.east) edge node[below] {$p_2$} ([yshift= -2pt]b.west)
|
|
199 (b) edge (c);
|
|
200 \end{tikzpicture}
|
|
201
|
|
202 \begin{tikzpicture}[descr/.style={fill=white},text height=1.5ex, text depth=0.25ex]
|
|
203 \node (a) at (0,0) {$\mathsf{S}(Z)$};
|
|
204 \node (b) at (2.5,0) {$\mathsf{S}(X)$};
|
|
205 \node (c) at (5,0) {$\mathsf{S}(U).$};
|
|
206 \path[->,font=\scriptsize,>=angle 90]
|
|
207 ([yshift= 9pt]b.west) edge node[above] {$i^{\ast}$} ([yshift= 9pt]a.east)
|
|
208 (a.east) edge node[descr] {$i_{\ast}$} (b.west)
|
|
209 ([yshift= -9pt]b.west) edge node[below] {$i^!$} ([yshift= -9pt]a.east)
|
|
210 ([yshift= 9pt]c.west) edge node[above] {$j_!$} ([yshift= 9pt]b.east)
|
|
211 (b.east) edge node[descr] {$j^{\ast}$} (c.west)
|
|
212 ([yshift= -9pt]c.west) edge node[below] {$j_*$} ([yshift= -9pt]b.east);
|
|
213 \end{tikzpicture}
|
|
214
|
|
215
|
|
216 \begin{tikzpicture}[>=angle 90,scale=2.2,text height=1.5ex, text depth=0.25ex]
|
|
217 %%First place the nodes
|
|
218 \node (k-1) at (0,3) {$0$};
|
|
219 \node (k0) [right=of k-1] {$Ker f$};
|
|
220 \node (k1) [right=of k0] {$Ker a$};
|
|
221 \node (k2) [right=of k1] {$Ker b$};
|
|
222 \node (k3) [right=of k2] {$Ker c$};
|
|
223 \node (a1) [below=of k1] {$A$};
|
|
224 \node (a2) [below=of k2] {$B$};
|
|
225 \node (a3) [below=of k3] {$C$};
|
|
226 \node (a4) [right=of a3] {$0$};
|
|
227 \node (b1) [below=of a1] {$A’$};
|
|
228 \node (b0) [left=of b1] {$0$};
|
|
229 \node (b2) [below=of a2] {$B’$};
|
|
230 \node (b3) [below=of a3] {$C’$};
|
|
231 \node (c1) [below=of b1] {$Coker a$};
|
|
232 \node (c2) [below=of b2] {$Coker b$};
|
|
233 \node (c3) [below=of b3] {$Coker c$};
|
|
234 \node (c4) [right=of c3] {$Coker g’$};
|
|
235 \node (c5) [right=of c4] {$0$};
|
|
236 %%Draw the red arrows
|
|
237 \draw[->,red,font=\scriptsize]
|
|
238 (k-1) edge (k0)
|
|
239 (k0) edge (k1)
|
|
240 (k1) edge (k2)
|
|
241 (k2) edge (k3)
|
|
242 (c1) edge (c2)
|
|
243 (c2) edge (c3)
|
|
244 (c3) edge (c4)
|
|
245 (c4) edge (c5);
|
|
246 %%Draw the curvy red arrow
|
|
247 \draw[->,red]
|
|
248 (k3) edge[out=0,in=180,red] node[pos=0.55,yshift=5pt] {$d$} (c1);
|
|
249 %%Draw the black arrows
|
|
250 \draw[->]
|
|
251 (k1) edge (a1)
|
|
252 (k2) edge (a2)
|
|
253 (k3) edge (a3)
|
|
254 (b1) edge (c1)
|
|
255 (b2) edge (c2)
|
|
256 (b3) edge (c3);
|
|
257 %%Draw the thick blue arrows
|
|
258 \draw[->,font=\scriptsize,blue,thick]
|
|
259 (a1) edge node[auto] {$f$} (a2)
|
|
260 (a2) edge node[auto] {$g$} (a3)
|
|
261 (a3) edge (a4)
|
|
262 (a1) edge node[auto] {$a$} (b1)
|
|
263 (a2) edge node[auto] {$b$} (b2)
|
|
264 (a3) edge node[auto] {$c$} (b3)
|
|
265 (b0) edge (b1)
|
|
266 (b1) edge node[below] {$f’$} (b2)
|
|
267 (b2) edge node[below] {$g’$} (b3);
|
|
268 \end{tikzpicture}
|
|
269
|
|
270
|
|
271 \end{document}
|