Mercurial > hg > Members > kono > Proof > category
annotate src/cokleisli.agda @ 1067:be83b28d1dd6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 27 Apr 2021 10:24:04 +0900 |
parents | e01a1d29492b |
children | 45de2b31bf02 |
rev | line source |
---|---|
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category |
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
1015
e01a1d29492b
Functional Completeness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1014
diff
changeset
|
3 open import HomReasoning |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 open import cat-utility |
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 |
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 |
1015
e01a1d29492b
Functional Completeness
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1014
diff
changeset
|
7 module coKleisli { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { S : Functor A A } (SM : coMonad A S) where |
969 | 8 |
9 open coMonad | |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 |
969 | 11 open Functor |
12 open NTrans | |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 |
969 | 14 -- |
971 | 15 -- Hom in Kleisli Category |
969 | 16 -- |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 |
969 | 18 record SHom (a : Obj A) (b : Obj A) |
19 : Set c₂ where | |
20 field | |
21 SMap : Hom A ( FObj S a ) b | |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
22 |
969 | 23 open SHom |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
24 |
969 | 25 S-id : (a : Obj A) → SHom a a |
26 S-id a = record { SMap = TMap (ε SM) a } | |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
27 |
969 | 28 open import Relation.Binary |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
29 |
969 | 30 _⋍_ : { a : Obj A } { b : Obj A } (f g : SHom a b ) → Set ℓ |
31 _⋍_ {a} {b} f g = A [ SMap f ≈ SMap g ] | |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
32 |
969 | 33 _*_ : { a b c : Obj A } → ( SHom b c) → ( SHom a b) → SHom a c |
34 _*_ {a} {b} {c} g f = record { SMap = coJoin SM {a} {b} {c} (SMap g) (SMap f) } | |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
35 |
969 | 36 isSCat : IsCategory ( Obj A ) SHom _⋍_ _*_ (λ {a} → S-id a) |
37 isSCat = record { isEquivalence = isEquivalence | |
38 ; identityL = SidL | |
39 ; identityR = SidR | |
40 ; o-resp-≈ = So-resp | |
41 ; associative = Sassoc | |
42 } | |
43 where | |
44 open ≈-Reasoning A | |
45 isEquivalence : { a b : Obj A } → IsEquivalence {_} {_} {SHom a b} _⋍_ | |
46 isEquivalence {C} {D} = record { refl = refl-hom ; sym = sym ; trans = trans-hom } | |
47 SidL : {a b : Obj A} → {f : SHom a b} → (S-id _ * f) ⋍ f | |
48 SidL {a} {b} {f} = begin | |
49 SMap (S-id _ * f) ≈⟨⟩ | |
50 (TMap (ε SM) b o (FMap S (SMap f))) o TMap (δ SM) a ≈↑⟨ car (nat (ε SM)) ⟩ | |
51 (SMap f o TMap (ε SM) (FObj S a)) o TMap (δ SM) a ≈↑⟨ assoc ⟩ | |
52 SMap f o TMap (ε SM) (FObj S a) o TMap (δ SM) a ≈⟨ cdr (IsCoMonad.unity1 (isCoMonad SM)) ⟩ | |
53 SMap f o id1 A _ ≈⟨ idR ⟩ | |
54 SMap f ∎ | |
55 SidR : {C D : Obj A} → {f : SHom C D} → (f * S-id _ ) ⋍ f | |
56 SidR {a} {b} {f} = begin | |
57 SMap (f * S-id a) ≈⟨⟩ | |
58 (SMap f o FMap S (TMap (ε SM) a)) o TMap (δ SM) a ≈↑⟨ assoc ⟩ | |
59 SMap f o (FMap S (TMap (ε SM) a) o TMap (δ SM) a) ≈⟨ cdr (IsCoMonad.unity2 (isCoMonad SM)) ⟩ | |
60 SMap f o id1 A _ ≈⟨ idR ⟩ | |
61 SMap f ∎ | |
62 So-resp : {a b c : Obj A} → {f g : SHom a b } → {h i : SHom b c } → | |
63 f ⋍ g → h ⋍ i → (h * f) ⋍ (i * g) | |
64 So-resp {a} {b} {c} {f} {g} {h} {i} eq-fg eq-hi = resp refl-hom (resp (fcong S eq-fg ) eq-hi ) | |
65 Sassoc : {a b c d : Obj A} → {f : SHom c d } → {g : SHom b c } → {h : SHom a b } → | |
66 (f * (g * h)) ⋍ ((f * g) * h) | |
67 Sassoc {a} {b} {c} {d} {f} {g} {h} = begin | |
68 SMap (f * (g * h)) ≈⟨ car (cdr (distr S)) ⟩ | |
69 (SMap f o ( FMap S (SMap g o FMap S (SMap h)) o FMap S (TMap (δ SM) a) )) o TMap (δ SM) a ≈⟨ car assoc ⟩ | |
70 ((SMap f o FMap S (SMap g o FMap S (SMap h))) o FMap S (TMap (δ SM) a) ) o TMap (δ SM) a ≈↑⟨ assoc ⟩ | |
71 (SMap f o FMap S (SMap g o FMap S (SMap h))) o (FMap S (TMap (δ SM) a) o TMap (δ SM) a ) ≈↑⟨ cdr (IsCoMonad.assoc (isCoMonad SM)) ⟩ | |
72 (SMap f o (FMap S (SMap g o FMap S (SMap h)))) o ( TMap (δ SM) (FObj S a) o TMap (δ SM) a ) ≈⟨ assoc ⟩ | |
73 ((SMap f o (FMap S (SMap g o FMap S (SMap h)))) o TMap (δ SM) (FObj S a) ) o TMap (δ SM) a ≈⟨ car (car (cdr (distr S))) ⟩ | |
74 ((SMap f o (FMap S (SMap g) o FMap S (FMap S (SMap h)))) o TMap (δ SM) (FObj S a) ) o TMap (δ SM) a ≈↑⟨ car assoc ⟩ | |
75 (SMap f o ((FMap S (SMap g) o FMap S (FMap S (SMap h))) o TMap (δ SM) (FObj S a) )) o TMap (δ SM) a ≈↑⟨ assoc ⟩ | |
76 SMap f o (((FMap S (SMap g) o FMap S (FMap S (SMap h))) o TMap (δ SM) (FObj S a) ) o TMap (δ SM) a) ≈↑⟨ cdr (car assoc ) ⟩ | |
77 SMap f o ((FMap S (SMap g) o (FMap S (FMap S (SMap h)) o TMap (δ SM) (FObj S a) )) o TMap (δ SM) a) ≈⟨ cdr (car (cdr (nat (δ SM)))) ⟩ | |
78 SMap f o ((FMap S (SMap g) o ( TMap (δ SM) b o FMap S (SMap h))) o TMap (δ SM) a) ≈⟨ assoc ⟩ | |
79 (SMap f o (FMap S (SMap g) o ( TMap (δ SM) b o FMap S (SMap h)))) o TMap (δ SM) a ≈⟨ car (cdr assoc) ⟩ | |
80 (SMap f o ((FMap S (SMap g) o TMap (δ SM) b ) o FMap S (SMap h))) o TMap (δ SM) a ≈⟨ car assoc ⟩ | |
81 ((SMap f o (FMap S (SMap g) o TMap (δ SM) b )) o FMap S (SMap h)) o TMap (δ SM) a ≈⟨ car (car assoc) ⟩ | |
82 (((SMap f o FMap S (SMap g)) o TMap (δ SM) b ) o FMap S (SMap h)) o TMap (δ SM) a ≈⟨⟩ | |
83 SMap ((f * g) * h) ∎ | |
968
3a096cb82dc4
Polynominal category and functional completeness begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
84 |
969 | 85 SCat : Category c₁ c₂ ℓ |
86 SCat = record { Obj = Obj A ; Hom = SHom ; _o_ = _*_ ; _≈_ = _⋍_ ; Id = λ {a} → S-id a ; isCategory = isSCat } | |
87 |