Mercurial > hg > Members > kono > Proof > category
annotate src/idF.agda @ 1124:f683d96fbc93 default tip
safe fix done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2024 22:28:50 +0900 |
parents | 45de2b31bf02 |
children |
rev | line source |
---|---|
1110
45de2b31bf02
add original library and fix for safe mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
949
diff
changeset
|
1 {-# OPTIONS --cubical-compatible --safe #-} |
45de2b31bf02
add original library and fix for safe mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
949
diff
changeset
|
2 |
153 | 3 module idF where |
4 | |
5 open import Category | |
6 open import HomReasoning | |
7 | |
8 identityFunctor : ∀{c₁ c₂ ℓ} {C : Category c₁ c₂ ℓ} → Functor C C | |
9 identityFunctor {C = C} = record { | |
10 FObj = λ x → x | |
11 ; FMap = λ x → x | |
12 ; isFunctor = isFunctor | |
13 } | |
14 where | |
15 isFunctor : ∀{c₁ c₂ ℓ} {C : Category c₁ c₂ ℓ} → IsFunctor C C (λ x → x) (λ x → x) | |
16 isFunctor {C = C} = | |
17 record { ≈-cong = Lemma1 | |
18 ; identity = Lemma2 | |
19 ; distr = Lemma3 | |
20 } where | |
21 FMap : {a b : Obj C} -> Hom C a b -> Hom C a b | |
22 FMap = λ x → x | |
23 FObj : Obj C -> Obj C | |
24 FObj = λ x → x | |
25 Lemma1 : {A B : Obj C} {f g : Hom C A B} → C [ f ≈ g ] → C [ FMap f ≈ FMap g ] | |
26 Lemma1 {a} {b} {f} {g} f≈g = let open ≈-Reasoning C in | |
27 begin | |
28 FMap f | |
29 ≈⟨⟩ | |
30 f | |
31 ≈⟨ f≈g ⟩ | |
32 g | |
33 ≈⟨⟩ | |
34 FMap g | |
35 ∎ | |
36 Lemma2 : {A : Obj C} → C [ (FMap {A} {A} (Id {_} {_} {_} {C} A)) ≈ (Id {_} {_} {_} {C} (FObj A)) ] | |
37 Lemma2 {A} = let open ≈-Reasoning C in | |
38 begin | |
39 (FMap {A} {A} (Id {_} {_} {_} {C} A)) | |
40 ≈⟨⟩ | |
41 (Id {_} {_} {_} {C} (FObj A)) | |
42 ∎ | |
43 Lemma3 : {a b c : Obj C} {f : Hom C a b} {g : Hom C b c} | |
44 → C [ FMap (C [ g o f ]) ≈ (C [ FMap g o FMap f ] )] | |
45 Lemma3 {a} {b} {c} {f} {g} = let open ≈-Reasoning C in | |
46 begin | |
47 FMap ( g o f ) | |
48 ≈⟨⟩ | |
49 g o f | |
50 ≈⟨⟩ | |
51 FMap g o FMap f | |
52 ∎ | |
53 | |
54 | |
55 | |
56 | |
57 |