Mercurial > hg > Members > kono > Proof > category
comparison CatReasoning.agda @ 31:17b8bafebad7
add universal mapping
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Jul 2013 14:30:27 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
30:98b8431a419b | 31:17b8bafebad7 |
---|---|
1 module CatReasoning where | |
2 | |
3 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
4 | |
5 open import Category -- https://github.com/konn/category-agda | |
6 open import Level | |
7 open Functor | |
8 | |
9 | |
10 -- F(f) | |
11 -- F(a) ---→ F(b) | |
12 -- | | | |
13 -- |t(a) |t(b) G(f)t(a) = t(b)F(f) | |
14 -- | | | |
15 -- v v | |
16 -- G(a) ---→ G(b) | |
17 -- G(f) | |
18 | |
19 record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′) | |
20 ( F G : Functor D C ) | |
21 (TMap : (A : Obj D) → Hom C (FObj F A) (FObj G A)) | |
22 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where | |
23 field | |
24 naturality : {a b : Obj D} {f : Hom D a b} | |
25 → C [ C [ ( FMap G f ) o ( TMap a ) ] ≈ C [ (TMap b ) o (FMap F f) ] ] | |
26 | |
27 record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) | |
28 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where | |
29 field | |
30 TMap : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A) | |
31 isNTrans : IsNTrans domain codomain F G TMap | |
32 | |
33 | |
34 | |
35 module ≈-Reasoning {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where | |
36 open import Relation.Binary.Core | |
37 | |
38 _o_ : {a b c : Obj A } ( x : Hom A a b ) ( y : Hom A c a ) → Hom A c b | |
39 x o y = A [ x o y ] | |
40 | |
41 _≈_ : {a b : Obj A } → Rel (Hom A a b) ℓ | |
42 x ≈ y = A [ x ≈ y ] | |
43 | |
44 infixr 9 _o_ | |
45 infix 4 _≈_ | |
46 | |
47 refl-hom : {a b : Obj A } { x : Hom A a b } → x ≈ x | |
48 refl-hom = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A )) | |
49 | |
50 trans-hom : {a b : Obj A } { x y z : Hom A a b } → | |
51 x ≈ y → y ≈ z → x ≈ z | |
52 trans-hom b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory A ))) b c | |
53 | |
54 -- some short cuts | |
55 | |
56 car : {a b c : Obj A } {x y : Hom A a b } { f : Hom A c a } → | |
57 x ≈ y → ( x o f ) ≈ ( y o f ) | |
58 car {f} eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) ( refl-hom ) eq | |
59 | |
60 cdr : {a b c : Obj A } {x y : Hom A a b } { f : Hom A b c } → | |
61 x ≈ y → f o x ≈ f o y | |
62 cdr {f} eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) eq (refl-hom ) | |
63 | |
64 id : (a : Obj A ) → Hom A a a | |
65 id a = (Id {_} {_} {_} {A} a) | |
66 | |
67 idL : {a b : Obj A } { f : Hom A b a } → id a o f ≈ f | |
68 idL = IsCategory.identityL (Category.isCategory A) | |
69 | |
70 idR : {a b : Obj A } { f : Hom A a b } → f o id a ≈ f | |
71 idR = IsCategory.identityR (Category.isCategory A) | |
72 | |
73 sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f | |
74 sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) | |
75 | |
76 assoc : {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b} | |
77 → f o ( g o h ) ≈ ( f o g ) o h | |
78 assoc = IsCategory.associative (Category.isCategory A) | |
79 | |
80 distr : (T : Functor A A) → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } | |
81 → FMap T ( g o f ) ≈ FMap T g o FMap T f | |
82 distr T = IsFunctor.distr ( isFunctor T ) | |
83 | |
84 open NTrans | |
85 nat : { c₁′ c₂′ ℓ′ : Level} (D : Category c₁′ c₂′ ℓ′) {a b : Obj D} {f : Hom D a b} {F G : Functor D A } | |
86 → (η : NTrans D A F G ) | |
87 → FMap G f o TMap η a ≈ TMap η b o FMap F f | |
88 nat _ η = IsNTrans.naturality ( isNTrans η ) | |
89 | |
90 | |
91 infixr 2 _∎ | |
92 infixr 2 _≈⟨_⟩_ _≈⟨⟩_ | |
93 infix 1 begin_ | |
94 | |
95 ------ If we have this, for example, as an axiom of a category, we can use ≡-Reasoning directly | |
96 -- ≈-to-≡ : {a b : Obj A } { x y : Hom A a b } → A [ x ≈ y ] → x ≡ y | |
97 -- ≈-to-≡ refl-hom = refl | |
98 | |
99 data _IsRelatedTo_ { a b : Obj A } ( x y : Hom A a b ) : | |
100 Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
101 relTo : (x≈y : x ≈ y ) → x IsRelatedTo y | |
102 | |
103 begin_ : { a b : Obj A } { x y : Hom A a b } → | |
104 x IsRelatedTo y → x ≈ y | |
105 begin relTo x≈y = x≈y | |
106 | |
107 _≈⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → | |
108 x ≈ y → y IsRelatedTo z → x IsRelatedTo z | |
109 _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z) | |
110 | |
111 _≈⟨⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y : Hom A a b } → x IsRelatedTo y → x IsRelatedTo y | |
112 _ ≈⟨⟩ x∼y = x∼y | |
113 | |
114 _∎ : { a b : Obj A } ( x : Hom A a b ) → x IsRelatedTo x | |
115 _∎ _ = relTo refl-hom | |
116 |