comparison limit-to.agda @ 417:1e76e611d454

with inv-f, distribution law passed.
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 24 Mar 2016 01:48:13 +0900
parents e4a2544d468c
children 7091104a8cb4
comparison
equal deleted inserted replaced
416:e4a2544d468c 417:1e76e611d454
5 5
6 open import cat-utility 6 open import cat-utility
7 open import HomReasoning 7 open import HomReasoning
8 open import Relation.Binary.Core 8 open import Relation.Binary.Core
9 open import Data.Maybe 9 open import Data.Maybe
10 open import maybeCat
11 open Functor 10 open Functor
12 11
13 12
14 13
15 14
26 25
27 data TwoObject {c₁ : Level} : Set c₁ where 26 data TwoObject {c₁ : Level} : Set c₁ where
28 t0 : TwoObject 27 t0 : TwoObject
29 t1 : TwoObject 28 t1 : TwoObject
30 29
31 30 data Arrow {c₁ c₂ : Level } ( t00 t11 : TwoObject {c₁} ) : TwoObject {c₁} -> TwoObject {c₁} -> Set c₂ where
32 record TwoCat {ℓ c₁ c₂ : Level } (A : Category c₁ c₂ ℓ) ( a b : Obj A ) ( f g : Hom A a b ): Set (c₂ ⊔ c₁ ⊔ ℓ) where 31 id-t0 : Arrow t00 t11 t00 t00
33 field 32 id-t1 : Arrow t00 t11 t11 t11
34 obj→ : Obj A -> TwoObject { c₁} 33 arrow-f : Arrow t00 t11 t00 t11
35 hom→ : {a b : Obj A} -> Hom A a b -> TwoObject { c₁} 34 arrow-g : Arrow t00 t11 t00 t11
36 inv : {a b : Obj A} -> Hom A a b -> Hom A b a 35 inv-f : Arrow t00 t11 t11 t00
37 iso→ : {a b : Obj A} -> ( h : Hom A a b ) -> A [ A [ inv h o h ] ≈ id1 A a ] 36
38 iso← : {a b : Obj A} -> ( h : Hom A a b ) -> A [ A [ h o inv h ] ≈ id1 A b ] 37 record TwoHom {c₁ c₂ : Level} (a b : TwoObject {c₁} ) : Set c₂ where
39 obj← : TwoObject {c₁} -> Obj A 38 field
40 obj← t0 = a 39 RawHom : Maybe ( Arrow {c₁} {c₂} t0 t1 a b )
41 obj← t1 = b 40
42 hom← : TwoObject {c₁} -> Hom A a b 41 open TwoHom
43 hom← t0 = f 42
44 hom← t1 = g 43 hom : ∀{ c₁ c₂ } { a b : TwoObject {c₁} } ->
45 44 ∀ (f : TwoHom {c₁} {c₂ } a b ) → Maybe ( Arrow {c₁} {c₂} t0 t1 a b )
46 open TwoCat 45 hom {_} {_} {a} {b} f with RawHom f
47 46 hom {_} {_} {t0} {t0} _ | just id-t0 = just id-t0
48 47 hom {_} {_} {t1} {t1} _ | just id-t1 = just id-t1
49 open MaybeHom 48 hom {_} {_} {t0} {t1} _ | just arrow-f = just arrow-f
50 49 hom {_} {_} {t0} {t1} _ | just arrow-g = just arrow-g
51 50 hom {_} {_} {t1} {t0} _ | just inv-f = just inv-f
52 indexFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( a b : Obj A) ( f g : Hom A a b ) -> 51 hom {_} {_} {_ } {_ } _ | _ = nothing
53 TwoCat A a b f g -> 52
54 Functor A (MaybeCat A ) 53
55 indexFunctor {c₁} {c₂} {ℓ} A a b f g two = record { 54 open TwoHom
55
56 -- arrow composition
57
58
59 _×_ : ∀ {c₁ c₂} -> {a b c : TwoObject {c₁}} → ( TwoHom {c₁} {c₂} b c ) → ( TwoHom {c₁} {c₂} a b ) → ( TwoHom {c₁} {c₂} a c )
60 _×_ {c₁} {c₂} {a} {b} {c} f g with hom f | hom g
61 _×_ {_} {_} {_} {_} {_} f g | nothing | _ = record { RawHom = nothing }
62 _×_ {_} {_} {_} {_} {_} f g | just _ | nothing = record { RawHom = nothing }
63 _×_ {_} {_} {t0} {t1} {t1} f g | just id-t1 | just arrow-f = record { RawHom = just arrow-f }
64 _×_ {_} {_} {t0} {t1} {t1} f g | just id-t1 | just arrow-g = record { RawHom = just arrow-g }
65 _×_ {_} {_} {t1} {t1} {t1} f g | just id-t1 | just id-t1 = record { RawHom = just id-t1 }
66 _×_ {_} {_} {t1} {t1} {t0} f g | just inv-f | just id-t1 = record { RawHom = just inv-f }
67 _×_ {_} {_} {t0} {t0} {t1} f g | just arrow-f | just id-t0 = record { RawHom = just arrow-f }
68 _×_ {_} {_} {t0} {t0} {t1} f g | just arrow-g | just id-t0 = record { RawHom = just arrow-g }
69 _×_ {_} {_} {t0} {t0} {t0} f g | just id-t0 | just id-t0 = record { RawHom = just id-t0 }
70 _×_ {_} {_} {t1} {t0} {t0} f g | just id-t0 | just inv-f = record { RawHom = just inv-f }
71 _×_ {_} {_} {_} {_} {_} f g | just _ | just _ = record { RawHom = nothing }
72
73
74 _==_ : ∀{ c₁ c₂ a b } -> Rel (Maybe (Arrow {c₁} {c₂} t0 t1 a b )) (c₂)
75 _==_ = Eq _≡_
76
77 map2hom : ∀{ c₁ c₂ } -> {a b : TwoObject {c₁}} → Maybe ( Arrow {c₁} {c₂} t0 t1 a b ) -> TwoHom {c₁} {c₂ } a b
78 map2hom {_} {_} {t1} {t1} (just id-t1) = record { RawHom = just id-t1 }
79 map2hom {_} {_} {t0} {t1} (just arrow-f) = record { RawHom = just arrow-f }
80 map2hom {_} {_} {t0} {t1} (just arrow-g) = record { RawHom = just arrow-g }
81 map2hom {_} {_} {t0} {t0} (just id-t0) = record { RawHom = just id-t0 }
82 map2hom {_} {_} {_} {_} _ = record { RawHom = nothing }
83
84 record TwoHom1 {c₁ c₂ : Level} (a : TwoObject {c₁} ) (b : TwoObject {c₁} ) : Set c₂ where
85 field
86 Map : TwoHom {c₁} {c₂ } a b
87 iso-Map : Map ≡ map2hom ( hom Map )
88
89 ==refl : ∀{ c₁ c₂ a b } -> ∀ {x : Maybe (Arrow {c₁} {c₂} t0 t1 a b )} → x == x
90 ==refl {_} {_} {_} {_} {just x} = just refl
91 ==refl {_} {_} {_} {_} {nothing} = nothing
92
93 ==sym : ∀{ c₁ c₂ a b } -> ∀ {x y : Maybe (Arrow {c₁} {c₂} t0 t1 a b )} → _==_ x y → _==_ y x
94 ==sym (just x≈y) = just (≡-sym x≈y)
95 ==sym nothing = nothing
96
97 ==trans : ∀{ c₁ c₂ a b } -> ∀ {x y z : Maybe (Arrow {c₁} {c₂} t0 t1 a b ) } →
98 x == y → y == z → x == z
99 ==trans (just x≈y) (just y≈z) = just (≡-trans x≈y y≈z)
100 ==trans nothing nothing = nothing
101
102
103 module ==-Reasoning {c₁ c₂ : Level} where
104
105 infixr 2 _∎
106 infixr 2 _==⟨_⟩_ _==⟨⟩_
107 infix 1 begin_
108
109
110 data _IsRelatedTo_ {c₁ c₂ : Level} {a b : TwoObject {c₁} } (x y : (Maybe (Arrow {c₁} {c₂} t0 t1 a b ))) :
111 Set c₂ where
112 relTo : (x≈y : x == y ) → x IsRelatedTo y
113
114 begin_ : { a b : TwoObject {c₁} } {x : Maybe (Arrow {c₁} {c₂} t0 t1 a b ) } {y : Maybe (Arrow {c₁} {c₂} t0 t1 a b )} →
115 x IsRelatedTo y → x == y
116 begin relTo x≈y = x≈y
117
118 _==⟨_⟩_ : { a b : TwoObject {c₁} } (x : Maybe (Arrow {c₁} {c₂} t0 t1 a b )) {y z : Maybe (Arrow {c₁} {c₂} t0 t1 a b ) } →
119 x == y → y IsRelatedTo z → x IsRelatedTo z
120 _ ==⟨ x≈y ⟩ relTo y≈z = relTo (==trans x≈y y≈z)
121
122 _==⟨⟩_ : { a b : TwoObject {c₁} }(x : Maybe (Arrow {c₁} {c₂} t0 t1 a b )) {y : Maybe (Arrow {c₁} {c₂} t0 t1 a b )}
123 → x IsRelatedTo y → x IsRelatedTo y
124 _ ==⟨⟩ x≈y = x≈y
125
126 _∎ : { a b : TwoObject {c₁} }(x : Maybe (Arrow {c₁} {c₂} t0 t1 a b )) → x IsRelatedTo x
127 _∎ _ = relTo ==refl
128
129
130
131 -- f g h
132 -- d <- c <- b <- a
133
134 assoc-× : {c₁ c₂ : Level } {a b c d : TwoObject {c₁} }
135 {f : (TwoHom {c₁} {c₂ } c d )} →
136 {g : (TwoHom {c₁} {c₂ } b c )} →
137 {h : (TwoHom {c₁} {c₂ } a b )} →
138 hom ( f × (g × h)) == hom ((f × g) × h )
139 assoc-× {c₁} {c₂} {a} {b} {c} {d} {f} {g} {h} with hom f | hom g | hom h
140 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
141 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
142 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
143 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
144 assoc-× {c₁} {c₂} {t0} {t1} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
145 assoc-× {c₁} {c₂} {t0} {t1} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
146 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
147 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
148 assoc-× {c₁} {c₂} {t1} {t0} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
149 assoc-× {c₁} {c₂} {t1} {t0} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
150 assoc-× {c₁} {c₂} {t1} {t0} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
151 assoc-× {c₁} {c₂} {t1} {t0} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
152 assoc-× {c₁} {c₂} {t1} {t1} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
153 assoc-× {c₁} {c₂} {t1} {t1} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
154 assoc-× {c₁} {c₂} {t1} {t1} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
155 assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
156 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
157 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
158 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
159 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
160 assoc-× {c₁} {c₂} {t0} {t1} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
161 assoc-× {c₁} {c₂} {t0} {t1} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
162 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
163 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
164 assoc-× {c₁} {c₂} {t1} {t0} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
165 assoc-× {c₁} {c₂} {t1} {t0} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
166 assoc-× {c₁} {c₂} {t1} {t0} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
167 assoc-× {c₁} {c₂} {t1} {t0} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
168 assoc-× {c₁} {c₂} {t1} {t1} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
169 assoc-× {c₁} {c₂} {t1} {t1} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
170 assoc-× {c₁} {c₂} {t1} {t1} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
171 assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
172 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | just id-t0 | just id-t0 | just id-t0 = ==refl
173 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just arrow-f | just id-t0 | just id-t0 = ==refl
174 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just arrow-g | just id-t0 | just id-t0 = ==refl
175 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just id-t1 | just arrow-f | just id-t0 = ==refl
176 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just id-t1 | just arrow-g | just id-t0 = ==refl
177 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | just arrow-f = ==refl
178 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | just arrow-g = ==refl
179 assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | just id-t1 = ==refl
180 -- remaining all failure case
181 assoc-× {c₁} {c₂} {a} {b} {c} {d} {f} {g} {h} | just _ | just _ | nothing = {!!}
182 assoc-× {c₁} {c₂} {t1} {t0} {_} {_} {f} {g} {h} | just _ | just _ | just _ = let open ==-Reasoning {c₁} {c₂} in
183 begin
184 {!!}
185 ==⟨ {!!} ⟩
186 {!!}
187
188 ... | just _ | just _ | just _ = let open ==-Reasoning {c₁} {c₂} in
189 begin
190 {!!}
191 ==⟨ {!!} ⟩
192 {!!}
193
194
195
196 TwoId : {c₁ c₂ : Level } (a : TwoObject {c₁} ) -> (TwoHom {c₁} {c₂ } a a )
197 TwoId {_} {_} t0 = record { RawHom = just id-t0 }
198 TwoId {_} {_} t1 = record { RawHom = just id-t1 }
199
200 open import maybeCat
201
202 -- identityL {c₁} {c₂} {_} {b} {nothing} = let open ==-Reasoning {c₁} {c₂} in
203 -- begin
204 -- (TwoId b × nothing)
205 -- ==⟨ {!!} ⟩
206 -- nothing
207 -- ∎
208
209 open import Relation.Binary
210 TwoCat : {c₁ c₂ ℓ : Level } -> Category c₁ c₂ c₂
211 TwoCat {c₁} {c₂} {ℓ} = record {
212 Obj = TwoObject {c₁} ;
213 Hom = λ a b → ( TwoHom {c₁} {c₂ } a b ) ;
214 _o_ = \{a} {b} {c} x y -> _×_ {c₁ } { c₂} {a} {b} {c} x y ;
215 _≈_ = \x y -> hom x == hom y ;
216 Id = \{a} -> TwoId {c₁ } { c₂} a ;
217 isCategory = record {
218 isEquivalence = record {refl = ==refl ; trans = ==trans ; sym = ==sym } ;
219 identityL = \{a b f} -> identityL {c₁} {c₂ } {a} {b} {f} ;
220 identityR = \{a b f} -> identityR {c₁} {c₂ } {a} {b} {f} ;
221 o-resp-≈ = \{a b c f g h i} -> o-resp-≈ {c₁} {c₂ } {a} {b} {c} {f} {g} {h} {i} ;
222 associative = \{a b c d f g h } -> assoc-× {c₁} {c₂} {a} {b} {c} {d} {f} {g} {h}
223 }
224 } where
225 identityL : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → hom ((TwoId B) × f) == hom f
226 identityL {c₁} {c₂} {_} {_} {f} with hom f
227 identityL {c₁} {c₂} {t0} {t0} {_} | nothing = nothing
228 identityL {c₁} {c₂} {t0} {t1} {_} | nothing = nothing
229 identityL {c₁} {c₂} {t1} {t0} {_} | nothing = nothing
230 identityL {c₁} {c₂} {t1} {t1} {_} | nothing = nothing
231 identityL {c₁} {c₂} {t1} {t0} {_} | just inv-f = ==refl
232 identityL {c₁} {c₂} {t1} {t1} {_} | just id-t1 = ==refl
233 identityL {c₁} {c₂} {t0} {t0} {_} | just id-t0 = ==refl
234 identityL {c₁} {c₂} {t0} {t1} {_} | just arrow-f = ==refl
235 identityL {c₁} {c₂} {t0} {t1} {_} | just arrow-g = ==refl
236 identityR : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → hom ( f × TwoId A ) == hom f
237 identityR {c₁} {c₂} {_} {_} {f} with hom f
238 identityR {c₁} {c₂} {t0} {t0} {_} | nothing = nothing
239 identityR {c₁} {c₂} {t0} {t1} {_} | nothing = nothing
240 identityR {c₁} {c₂} {t1} {t0} {_} | nothing = nothing
241 identityR {c₁} {c₂} {t1} {t1} {_} | nothing = nothing
242 identityR {c₁} {c₂} {t1} {t0} {_} | just inv-f = ==refl
243 identityR {c₁} {c₂} {t1} {t1} {_} | just id-t1 = ==refl
244 identityR {c₁} {c₂} {t0} {t0} {_} | just id-t0 = ==refl
245 identityR {c₁} {c₂} {t0} {t1} {_} | just arrow-f = ==refl
246 identityR {c₁} {c₂} {t0} {t1} {_} | just arrow-g = ==refl
247 o-resp-≈ : {c₁ c₂ : Level } {A B C : TwoObject {c₁} } {f g : ( TwoHom {c₁} {c₂ } A B)} {h i : ( TwoHom B C)} →
248 hom f == hom g → hom h == hom i → hom ( h × f ) == hom ( i × g )
249 o-resp-≈ {_} {_} {a} {b} {c} {f} {g} {h} {i} f≡g h≡i = {!!}
250
251
252 indexFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( a b : Obj (MaybeCat A )) ( f g : Hom A a b ) -> Functor (TwoCat {c₁} {c₂} {c₂} ) (MaybeCat A )
253 indexFunctor {c₁} {c₂} {ℓ} A a b f g = record {
56 FObj = λ a → fobj a 254 FObj = λ a → fobj a
57 ; FMap = λ {a} {b} f → fmap {a} {b} f 255 ; FMap = λ {a} {b} f → fmap {a} {b} f
58 ; isFunctor = record { 256 ; isFunctor = record {
59 identity = \{x} -> identity {x} 257 identity = \{x} -> identity {x}
60 ; distr = \ {a} {b} {c} {f} {g} -> distr1 {a} {b} {c} {f} {g} 258 ; distr = \ {a} {b} {c} {f} {g} -> distr1 {a} {b} {c} {f} {g}
61 ; ≈-cong = \ {a} {b} {c} {f} -> ≈-cong {a} {b} {c} {f} 259 ; ≈-cong = \ {a} {b} {c} {f} -> ≈-cong {a} {b} {c} {f}
62 } 260 }
63 } where 261 } where
262 I = TwoCat {c₁} {c₂} {ℓ}
64 MA = MaybeCat A 263 MA = MaybeCat A
65 open ≈-Reasoning (MA) 264 open ≈-Reasoning (MA)
66 fobj : Obj A -> Obj A 265 fobj : Obj I -> Obj A
67 fobj x with obj→ two x 266 fobj t0 = a
68 fobj _ | t0 = a 267 fobj t1 = b
69 fobj _ | t1 = b 268 fmap : {x y : Obj I } -> (TwoHom {c₁} {c₂} x y ) -> Hom MA (fobj x) (fobj y)
70 fmap : {x y : Obj A } -> (Hom A x y ) -> Hom MA (fobj x) (fobj y) 269 fmap {x} {y} h with hom h
71 fmap {x} {y} h with obj→ two x | obj→ two y | hom→ two f 270 fmap {t0} {t0} h | just id-t0 = id1 MA a
72 fmap {_} {_} h | t0 | t1 | t0 = record { hom = just f } 271 fmap {t1} {t1} h | just id-t1 = id1 MA b
73 fmap {_} {_} h | t0 | t1 | t1 = record { hom = just g } 272 fmap {t0} {t1} h | just arrow-f = record { hom = just f }
74 fmap {_} {_} h | t1 | t0 | t0 = record { hom = just (inv two f) } 273 fmap {t0} {t1} h | just arrow-g = record { hom = just g }
75 fmap {_} {_} h | t1 | t0 | t1 = record { hom = just (inv two g) } 274 fmap {_} {_} h | _ = record { hom = nothing }
76 fmap {x} {_} h | t0 | t0 | _ = id1 MA ( obj← two t0 ) 275 identity : {x : Obj I} → MA [ fmap ( id1 I x ) ≈ id1 MA (fobj x) ]
77 fmap {x} {_} h | t1 | t1 | _ = id1 MA ( obj← two t1 ) 276 identity {t0} = refl-hom
78 identity : {x : Obj A} → MA [ fmap ( id1 A x ) ≈ id1 MA ( fobj x ) ] 277 identity {t1} = refl-hom
79 identity {x} with obj→ two x 278 distr1 : {a₁ : Obj I} {b₁ : Obj I} {c : Obj I} {f₁ : Hom I a₁ b₁} {g₁ : Hom I b₁ c} →
80 identity | t0 = refl-hom 279 MA [ fmap (I [ g₁ o f₁ ]) ≈ MA [ fmap g₁ o fmap f₁ ] ]
81 identity | t1 = refl-hom 280 distr1 {a1} {b1} {c1} {f1} {g1} with hom g1 | hom f1
82 distr1 : {a₁ : Obj A} {b₁ : Obj A} {c : Obj A} {f₁ : Hom A a₁ b₁} {g₁ : Hom A b₁ c} → 281 distr1 {t0} {t0} {t0} {f1} {g1} | nothing | nothing = nothing
83 MA [ fmap (A [ g₁ o f₁ ]) ≈ MA [ fmap g₁ o fmap f₁ ] ] 282 distr1 {t0} {t0} {t1} {f1} {g1} | nothing | nothing = nothing
84 distr1 {a1} {b1} {c} {f1} {g1} with obj→ two a1 | obj→ two b1 | obj→ two c | hom→ two f | hom→ two g 283 distr1 {t0} {t1} {t0} {f1} {g1} | nothing | nothing = nothing
85 distr1 {a1} {b1} {c} {f1} {g1} | t0 | t0 | t0 | _ | _ = {!!} 284 distr1 {t0} {t1} {t1} {f1} {g1} | nothing | nothing = nothing
86 distr1 {a1} {b1} {c} {f1} {g1} | t0 | t0 | t1 | _ | _ = {!!} 285 distr1 {t1} {t0} {t0} {f1} {g1} | nothing | nothing = nothing
87 distr1 {a1} {b1} {c} {f1} {g1} | t0 | t1 | t1 | _ | _ = {!!} 286 distr1 {t1} {t0} {t1} {f1} {g1} | nothing | nothing = nothing
88 distr1 {a1} {b1} {c} {f1} {g1} | t1 | t1 | t1 | _ | _ = {!!} 287 distr1 {t1} {t1} {t0} {f1} {g1} | nothing | nothing = nothing
89 distr1 {a1} {b1} {c} {f1} {g1} | t1 | t0 | t0 | _ | _ = {!!} 288 distr1 {t1} {t1} {t1} {f1} {g1} | nothing | nothing = nothing
90 distr1 {a1} {b1} {c} {f1} {g1} | t1 | t1 | t0 | _ | _ = {!!} 289 distr1 {t0} {t0} {t0} {f1} {g1} | nothing | just id-t0 = nothing
91 -- next two cases require the inverse of f and g 290 distr1 {t0} {t0} {t1} {f1} {g1} | nothing | just id-t0 = nothing
92 -- if we add invserse, there no nothing part, it generates extra commutaivitiy in nat, which is no good 291 distr1 {t1} {t1} {t0} {f1} {g1} | nothing | just id-t1 = nothing
93 -- so A [ g o f ] should be nothing in codomain Category 292 distr1 {t1} {t1} {t1} {f1} {g1} | nothing | just id-t1 = nothing
94 distr1 {a1} {b1} {c} {f1} {g1} | t1 | t0 | t1 | _ | _ = {!!} 293 distr1 {t0} {t1} {t1} {f1} {g1} | nothing | just arrow-f = nothing
95 distr1 {a1} {b1} {c} {f1} {g1} | t0 | t1 | t0 | _ | _ = {!!} 294 distr1 {t0} {t1} {t0} {f1} {g1} | nothing | just arrow-f = nothing
96 ≈-cong : {a : Obj A} {b : Obj A} {f g : Hom A a b} → _[_≈_] A f g → {!!} 295 distr1 {t0} {t1} {t1} {f1} {g1} | nothing | just arrow-g = nothing
296 distr1 {t0} {t1} {t0} {f1} {g1} | nothing | just arrow-g = nothing
297 distr1 {t1} {t0} {t0} {f1} {g1} | nothing | just inv-f = nothing
298 distr1 {t1} {t0} {t1} {f1} {g1} | nothing | just inv-f = nothing
299 distr1 {t0} {t0} {t0} {f1} {g1} | just id-t0 | nothing = nothing
300 distr1 {t1} {t0} {t0} {f1} {g1} | just id-t0 | nothing = nothing
301 distr1 {t0} {t1} {t1} {f1} {g1} | just id-t1 | nothing = nothing
302 distr1 {t1} {t1} {t1} {f1} {g1} | just id-t1 | nothing = nothing
303 distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-f | nothing = nothing
304 distr1 {t1} {t0} {t1} {f1} {g1} | just arrow-f | nothing = nothing
305 distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-g | nothing = nothing
306 distr1 {t1} {t0} {t1} {f1} {g1} | just arrow-g | nothing = nothing
307 distr1 {t0} {t1} {t0} {f1} {g1} | just inv-f | nothing = nothing
308 distr1 {t1} {t1} {t0} {f1} {g1} | just inv-f | nothing = nothing
309 distr1 {t0} {t0} {t0} {f1} {g1} | just id-t0 | just id-t0 = sym idL
310 distr1 {t1} {t0} {t0} {f1} {g1} | just id-t0 | just inv-f = sym idL
311 distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-f | just id-t0 = sym idR
312 distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-g | just id-t0 = sym idR
313 distr1 {t1} {t1} {t1} {f1} {g1} | just id-t1 | just id-t1 = sym idL
314 distr1 {t0} {t1} {t1} {f1} {g1} | just id-t1 | just arrow-f = sym idL
315 distr1 {t0} {t1} {t1} {f1} {g1} | just id-t1 | just arrow-g = sym idL
316 distr1 {t1} {t1} {t0} {f1} {g1} | just inv-f | just id-t1 = sym idL
317 distr1 {t0} {t1} {t0} {_} {_} | (just inv-f) | (just _) = nothing
318 distr1 {t1} {t0} {t1} {_} {_} | (just arrow-f) | (just _) = nothing
319 distr1 {t1} {t0} {t1} {_} {_} | (just arrow-g) | (just _) = nothing
320
321 ≈-cong : {a : Obj I} {b : Obj I} {f g : Hom I a b} → _[_≈_] I f g → {!!}
97 ≈-cong {_} {_} {f1} {g1} f≈g = {!!} 322 ≈-cong {_} {_} {f1} {g1} f≈g = {!!}
98 323
99 324
100 --- Equalizer 325 --- Equalizer
101 --- f 326 --- f
117 → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g 342 → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g
118 lim-to-equ {c₁} {c₂} {ℓ } A lim {a} {b} {c} f g e fe=ge = record { 343 lim-to-equ {c₁} {c₂} {ℓ } A lim {a} {b} {c} f g e fe=ge = record {
119 fe=ge = fe=ge 344 fe=ge = fe=ge
120 ; k = λ {d} h fh=gh → k {d} h fh=gh 345 ; k = λ {d} h fh=gh → k {d} h fh=gh
121 ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh 346 ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh
122 ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k' } where 347 ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k'
123 I = A 348 } where
124 MA = MaybeCat A 349 I = TwoCat {c₁} {c₂} {ℓ }
125 Γ = {!!} 350 Γ = {!!}
126 nmap : (x : Obj I) ( d : Obj A ) (h : Hom A d a ) -> Hom A (FObj (K A I d) x) (FObj Γ x) 351 nmap : (x : Obj I) ( d : Obj A ) (h : Hom A d a ) -> Hom A (FObj (K A I d) x) (FObj Γ x)
127 nmap x d h = {!!} 352 nmap x d h = {!!}
128 commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ] 353 commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ]
129 → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A I d) f' ] ] 354 → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A I d) f' ] ]