Mercurial > hg > Members > kono > Proof > category
comparison equalizer.agda @ 207:22811f7a04e1
Equalizer problems have written
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 16:54:02 +0900 |
parents | 3a5e2a22e053 |
children | a1e5d2a3d3bd |
comparison
equal
deleted
inserted
replaced
206:3a5e2a22e053 | 207:22811f7a04e1 |
---|---|
19 module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where | 19 module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where |
20 | 20 |
21 open import HomReasoning | 21 open import HomReasoning |
22 open import cat-utility | 22 open import cat-utility |
23 | 23 |
24 record Equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | 24 record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
25 field | 25 field |
26 equalizer : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → Hom A c d | 26 equalizer : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → Hom A c d |
27 equalize : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → | 27 equalize : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → |
28 A [ A [ f o f' ] ≈ A [ A [ g o g' ] o equalizer f' g' ] ] | 28 A [ A [ f o f' ] ≈ A [ A [ g o g' ] o equalizer f' g' ] ] |
29 uniqueness : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) ( e : Hom A c d ) → | 29 uniqueness : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) ( e : Hom A c d ) → |
30 A [ A [ f o f' ] ≈ A [ A [ g o g' ] o e ] ] → A [ e ≈ equalizer f' g' ] | 30 A [ A [ f o f' ] ≈ A [ A [ g o g' ] o e ] ] → A [ e ≈ equalizer f' g' ] |
31 | 31 |
32 record EqEqualizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | 32 record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
33 field | 33 field |
34 α : {d a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → Hom A d a | 34 α : {e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a |
35 γ : {d c : Obj A} → (f : Hom A c b) → (g : Hom A c b ) → (h : Hom A d c ) → Hom A d c | 35 γ : {c d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e |
36 δ : {a b : Obj A} → (f : Hom A a b) → Hom A a a | 36 δ : {e a b : Obj A} → (f : Hom A a b) → Hom A a e |
37 β : {c a b d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A c d ) → Hom A c a | 37 b1 : {e : Obj A} → A [ A [ f o α {e} f g ] ≈ A [ g o α {e} f g ] ] |
38 b1 : {c : Obj A} → A [ A [ f o α {c} f g ] ≈ A [ g o α {c} f g ] ] | 38 b2 : {c d : Obj A } → {h : Hom A d a } → A [ A [ α {c} f g o γ {c} f g h ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] |
39 b2 : {c d : Obj A } → {h : Hom A d a } → A [ A [ α f g o γ f g h ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] | 39 b3 : {e : Obj A} → A [ A [ α {e} f f o δ {e} f ] ≈ id1 A a ] |
40 b3 : A [ A [ α f f o δ f ] ≈ id1 A a ] | 40 -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] |
41 b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] | 41 b4 : {c d : Obj A } {k : Hom A c a} → A [ A [ γ f g ( A [ α f g o k ] ) o δ {c} (A [ f o A [ α f g o k ] ] ) ] ≈ k ] |
42 b5 : {c d : Obj A } → {h : Hom A d a } → A [ β f g h ≈ A [ γ f g h o δ (A [ f o h ]) ] ] | 42 -- A [ α f g o β f g h ] ≈ h |
43 β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e | |
44 β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] | |
45 | |
46 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) → Equalizer A f g → EqEqualizer A f g | |
47 lemma-equ1 A {a} {b} f g eqa = record { | |
48 α = {!!} ; | |
49 γ = {!!} ; | |
50 δ = {!!} ; | |
51 b1 = {!!} ; | |
52 b2 = {!!} ; | |
53 b3 = {!!} ; | |
54 b4 = {!!} | |
55 } |