Mercurial > hg > Members > kono > Proof > category
comparison equalizer.agda @ 217:306f07bece85
add equalizer+h
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 04 Sep 2013 12:13:27 +0900 |
parents | 0135419f375c |
children | 749a1ecbc0b5 |
comparison
equal
deleted
inserted
replaced
216:0135419f375c | 217:306f07bece85 |
---|---|
46 β {d} {e} {a} {b} f g h = A [ γ {a} {b} {c} f g h o δ (A [ f o h ]) ] | 46 β {d} {e} {a} {b} f g h = A [ γ {a} {b} {c} f g h o δ (A [ f o h ]) ] |
47 | 47 |
48 open Equalizer | 48 open Equalizer |
49 open EqEqualizer | 49 open EqEqualizer |
50 | 50 |
51 -- Equalizer is unique up to iso | |
52 | |
53 equalizer-iso : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) | |
54 → Hom A c c' --- != id1 A c | |
55 equalizer-iso {c} eqa eqa' = k eqa' (e eqa) (ef=eg eqa) | |
56 | |
57 -- e eqa f g f | |
58 -- c ----------> a ------->b | |
59 -- ---> d ---> | |
60 -- i h | |
61 | |
62 equalizer+h : {a b c d : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) (i : Hom A c d ) → (h : Hom A d a ) | |
63 → A [ A [ h o i ] ≈ e eqa ] | |
64 → Equalizer A {c} (A [ f o h ]) (A [ g o h ] ) | |
65 equalizer+h {a} {b} {c} {d} {f} {g} eqa i h eq = record { | |
66 e = i ; -- Hom A a d | |
67 ef=eg = ef=eg1 ; | |
68 k = λ j eq' → k eqa (A [ h o j ]) (fhj=ghj j eq' ) ; | |
69 ek=h = ek=h1 ; | |
70 uniqueness = uniqueness1 | |
71 } where | |
72 fhj=ghj : {d' : Obj A } → (j : Hom A d' d ) → | |
73 A [ A [ A [ f o h ] o j ] ≈ A [ A [ g o h ] o j ] ] → | |
74 A [ A [ f o A [ h o j ] ] ≈ A [ g o A [ h o j ] ] ] | |
75 fhj=ghj j eq' = let open ≈-Reasoning (A) in | |
76 begin | |
77 f o ( h o j ) | |
78 ≈⟨ assoc ⟩ | |
79 (f o h ) o j | |
80 ≈⟨ eq' ⟩ | |
81 (g o h ) o j | |
82 ≈↑⟨ assoc ⟩ | |
83 g o ( h o j ) | |
84 ∎ | |
85 ef=eg1 : A [ A [ A [ f o h ] o i ] ≈ A [ A [ g o h ] o i ] ] | |
86 ef=eg1 = let open ≈-Reasoning (A) in | |
87 begin | |
88 ( f o h ) o i | |
89 ≈↑⟨ assoc ⟩ | |
90 f o (h o i ) | |
91 ≈⟨ cdr eq ⟩ | |
92 f o (e eqa) | |
93 ≈⟨ ef=eg eqa ⟩ | |
94 g o (e eqa) | |
95 ≈↑⟨ cdr eq ⟩ | |
96 g o (h o i ) | |
97 ≈⟨ assoc ⟩ | |
98 ( g o h ) o i | |
99 ∎ | |
100 ek=h1 : {d' : Obj A} {h' : Hom A d' d} {eq' : A [ A [ A [ f o h ] o h' ] ≈ A [ A [ g o h ] o h' ] ]} → | |
101 A [ A [ i o k eqa (A [ h o h' ]) (fhj=ghj h' eq') ] ≈ h' ] | |
102 ek=h1 {d'} {h'} {eq'} = let open ≈-Reasoning (A) in | |
103 begin | |
104 i o k eqa (h o h' ) (fhj=ghj h' eq') | |
105 ≈⟨ {!!} ⟩ | |
106 h' | |
107 ∎ | |
108 uniqueness1 : {d' : Obj A} {h' : Hom A d' d} {eq' : A [ A [ A [ f o h ] o h' ] ≈ A [ A [ g o h ] o h' ] ]} {k' : Hom A d' c} → | |
109 A [ A [ i o k' ] ≈ h' ] → A [ k eqa (A [ h o h' ]) (fhj=ghj h' eq') ≈ k' ] | |
110 uniqueness1 {d'} {h'} {eq'} {k'} ik=h = let open ≈-Reasoning (A) in | |
111 begin | |
112 k eqa (A [ h o h' ]) (fhj=ghj h' eq') | |
113 ≈⟨ uniqueness eqa ( begin | |
114 e eqa o k' | |
115 ≈↑⟨ car eq ⟩ | |
116 (h o i ) o k' | |
117 ≈↑⟨ assoc ⟩ | |
118 h o (i o k') | |
119 ≈⟨ cdr ik=h ⟩ | |
120 h o h' | |
121 ∎ ) ⟩ | |
122 k' | |
123 ∎ | |
51 | 124 |
52 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → {a b c : Obj A} (f g : Hom A a b) → | 125 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → {a b c : Obj A} (f g : Hom A a b) → |
53 ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g | 126 ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g |
54 lemma-equ1 A {a} {b} {c} f g eqa = record { | 127 lemma-equ1 A {a} {b} {c} f g eqa = record { |
55 α = λ f g → e (eqa f g ) ; -- Hom A c a | 128 α = λ f g → e (eqa f g ) ; -- Hom A c a |
69 -- | | 142 -- | |
70 -- d | 143 -- d |
71 -- | 144 -- |
72 -- | 145 -- |
73 -- e o id1 ≈ e → k e ≈ id | 146 -- e o id1 ≈ e → k e ≈ id |
74 ff-equal4 : A [ A [ e (eqa f g ) o (e (eqa (A [ f o e (eqa f g) ] ) (A [ g o e (eqa f g) ] ))) ] ≈ | 147 |
75 e (eqa f g ) | |
76 ] → | |
77 A [ k (eqa f g ) (e (eqa f g)) (ef=eg (eqa f g)) ≈ e (eqa (A [ f o e (eqa f g) ] ) (A [ g o e (eqa f g) ] )) ] | |
78 ff-equal4 eq = uniqueness (eqa f g) eq | |
79 | |
80 ff-equal3 : A [ e (eqa (A [ f o e (eqa f g) ] ) (A [ g o e (eqa f g) ] ) ) ≈ k (eqa f g ) (e (eqa f g)) (ef=eg (eqa f g)) ] | |
81 ff-equal3 = let open ≈-Reasoning (A) in | |
82 begin | |
83 e (eqa (A [ f o e (eqa f g) ] ) (A [ g o e (eqa f g) ] ) ) | |
84 ≈↑⟨ uniqueness (eqa f g) {!!} ⟩ | |
85 k (eqa f g ) (e (eqa f g)) (ef=eg (eqa f g)) | |
86 ∎ | |
87 ff-equal2 : A [ k (eqa f g) (e (eqa f g)) (ef=eg (eqa f g)) ≈ id1 A a ] | |
88 ff-equal2 = let open ≈-Reasoning (A) in | |
89 begin | |
90 k (eqa f g) (e (eqa f g)) (ef=eg (eqa f g)) | |
91 ≈⟨ uniqueness (eqa f g) idR ⟩ | |
92 id1 A a | |
93 ∎ | |
94 ff-equal1 : A [ e (eqa (A [ f o e (eqa f g) ] ) (A [ g o e (eqa f g) ] ) ) ≈ id1 A a ] | |
95 ff-equal1 = let open ≈-Reasoning (A) in | |
96 begin | |
97 e (eqa (f o e (eqa f g) ) (g o e (eqa f g) )) | |
98 ≈⟨ {!!} ⟩ | |
99 id1 A a | |
100 ∎ | |
101 ff-equal : {d : Obj A} {k₁ : Hom A d c} → A [ e (eqa (A [ f o A [ e (eqa f g) o k₁ ] ] ) (A [ f o A [ e (eqa f g) o k₁ ] ] ) ) ≈ id1 A d ] | |
102 ff-equal {d} {k₁} = let open ≈-Reasoning (A) in | |
103 begin | |
104 e (eqa (f o e (eqa f g) o k₁) (f o e (eqa f g) o k₁)) | |
105 ≈⟨ {!!} ⟩ | |
106 id1 A d | |
107 ∎ | |
108 fg-equal : {d : Obj A} {k₁ : Hom A d c} → A [ e (eqa (A [ f o A [ e (eqa f g) o k₁ ] ] ) (A [ g o A [ e (eqa f g) o k₁ ] ] ) ) ≈ id1 A d ] | |
109 fg-equal = {!!} | |
110 lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] | 148 lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] |
111 lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom | 149 lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom |
112 lemma-equ3 : A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] | 150 lemma-equ3 : A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] |
113 lemma-equ3 = let open ≈-Reasoning (A) in | 151 lemma-equ3 = let open ≈-Reasoning (A) in |
114 begin | 152 begin |