Mercurial > hg > Members > kono > Proof > category
comparison nat.agda @ 9:3207ae6d4442
reasoning
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2013 18:16:46 +0900 |
parents | d5e4db7bbe01 |
children | 3ef6a17353d1 |
comparison
equal
deleted
inserted
replaced
8:d5e4db7bbe01 | 9:3207ae6d4442 |
---|---|
142 refl-hom = \a -> IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory a )) | 142 refl-hom = \a -> IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory a )) |
143 | 143 |
144 trans-hom : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } | 144 trans-hom : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } |
145 { x y z : Hom A a b } → | 145 { x y z : Hom A a b } → |
146 A [ x ≈ y ] → A [ y ≈ z ] → A [ x ≈ z ] | 146 A [ x ≈ y ] → A [ y ≈ z ] → A [ x ≈ z ] |
147 trans-hom = \a -> IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory a )) | 147 trans-hom a b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory a ))) b c |
148 | 148 |
149 infix 2 _∎ | 149 infixr 2 _∎_ |
150 infixr 2 _≈⟨_⟩_ | 150 infixr 2 _≈⟨_!_⟩_ |
151 infix 1 begin_ | 151 infix 1 begin_ |
152 | 152 |
153 data IsRelatedTo {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) : | 153 data IsRelatedTo {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) : |
154 Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | 154 Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where |
155 relTo : (x≈y : A [ x ≈ y ] ) → IsRelatedTo A x y | 155 relTo : (x≈y : A [ x ≈ y ] ) → IsRelatedTo A x y |
156 | 156 |
157 begin_ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } { x y : Hom A a b} → | 157 begin_ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } { x y : Hom A a b} → |
158 IsRelatedTo A x y → A [ x ≈ y ] | 158 IsRelatedTo A x y → A [ x ≈ y ] |
159 begin relTo x≈y = x≈y | 159 begin relTo x≈y = x≈y |
160 | 160 |
161 _≈⟨_⟩_ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } | 161 _≈⟨_!_⟩_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> {a b : Obj A } |
162 { x y z : Hom A a b } → | 162 ( x : Hom A a b ) → { y z : Hom A a b } → |
163 A [ x ≈ y ] → IsRelatedTo A y z → IsRelatedTo A x z | 163 A [ x ≈ y ] → IsRelatedTo A y z → IsRelatedTo A x z |
164 _≈⟨_⟩_ = {!!} | 164 a ≈⟨ _ ! x≈y ⟩ relTo y≈z = relTo ( trans-hom a x≈y y≈z ) |
165 | 165 |
166 -- _≈⟨ x ⟩ _ = ? -- relTo (Trans1 x≈y y≈z) | 166 _∎_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x |
167 -- _≈⟨ x≈y ⟩ relTo y≈z = ? -- relTo (Trans1 x≈y y≈z) | 167 a ∎ _ = relTo ( refl-hom a ) |
168 | |
169 _∎ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x | |
170 _∎ _ = relTo {!!} | |
171 | 168 |
172 open Kleisli | 169 open Kleisli |
173 Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> | 170 Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> |
174 { T : Functor A A } | 171 { T : Functor A A } |
175 { η : NTrans A A identityFunctor T } | 172 { η : NTrans A A identityFunctor T } |